阿尔茨海默氏病(AD)在具有认知功能的脑皮质和海马等地区引起淀粉样β(Aβ)斑块形成。除了氧化应激,神经炎症和乙酰胆碱外,AD患者的谷氨酸能途径的变性还会导致乙酰胆碱在皮质和海马中积累,从而形成AβPlaque。在此,我们研究了大麻sativa成分的大麻二酚(CBD)和大麻醇(CBG)对Aβ1-42Aβ1-42的脑室内(ICV)给药引起的AD样认知缺陷的影响。sprague dawley大鼠分为四组:i)控制,ii)阿尔茨海默氏症,iii)阿尔茨海默氏症+CBD和iv)阿尔茨海默氏症+CBG。通过ICV注射Aβ1-42,然后对CBD和CBG处理诱导了AD模型2周。进行了开放式测试,被动避免测试和莫里斯的水迷宫测试,在第15天,将大鼠斩首。从大脑中去除海马和脑皮质,并通过ELISA测量白细胞介素1β(IL-1β)的水平,肿瘤坏死因子-α(TNF-α),并通过免疫组织化学评估了Aβ1-42表达。通过开放田测试评估的参数中两组之间没有显着差异。在被动避免和莫里斯的水迷宫测试中,CBD和CBG都增强了AD损害的学习记忆功能。CBD和CBG处理成功降低了AD中TNF-α和IL-1β的水平。免疫组织化学分析显示,CBD和CBG治疗组中Aβ1-42的表达降低。CBD和CBG处理改善了Aβ1-42诱导的AD模型中的学习和记忆缺陷。 我们暗示,这些实验发现将导致对C. sativa(草药起源及其成分的天然产物)的有针对性研究的更好途径,该研究可能有可能用于AD治疗。CBD和CBG处理改善了Aβ1-42诱导的AD模型中的学习和记忆缺陷。我们暗示,这些实验发现将导致对C. sativa(草药起源及其成分的天然产物)的有针对性研究的更好途径,该研究可能有可能用于AD治疗。
缩写:AD,阿尔茨海默氏病; ALS,肌萎缩性侧索硬化症;应用,淀粉样前体蛋白; β,淀粉样β; BACE1,β位点淀粉样蛋白前体蛋白裂解酶1; BBB,血脑屏障; BCRP,乳腺癌抗性蛋白; BPS,双酚; BPA,双酚A; BPAF,双酚AF; BPB,Bisphenol B; BPF,双酚F; BPS,双足醇S; Ca 2 +,钙;猫,过氧化氢酶;中枢神经系统,中枢神经系统;中枢神经系统,皮质神经元; DA,多巴胺; DAT,多巴胺转运蛋白; PYSL2,二氢吡啶酶相关蛋白2; ECHA,欧洲化学局; EDC,内分泌破坏化学物质; ER,雌激素受体; GSK3β,糖原合酶激酶3β; HT-22,海马细胞系; IR,胰岛素受体; IRS,胰岛素受体底物; MAP2,微管相关蛋白2; MDA,疟原虫dehyde; MS,多发性硬化症; NFT,神经纤维纠缠; NOS,一氧化氮合酶; PD,帕金森氏病; PDI,蛋白二硫异构酶; RNase,还原核糖核酸酶; ROS,活性氧; SN,黑底尼格拉; SNC,黑质Nigra pars commacta;草皮,超氧化物歧化酶; SPS,老年斑块; SVHC,非常关注的实质; Th,酪氨酸羟化酶; TK,酪氨酸激酶; α -syn,α-苏核蛋白。*通讯作者。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。
Sang-gyu Lee 1 , Teja Muralidhar Kalidindi 1 , Hanzhi Lou 2 , Kishore Gangangari 1,3 , Blesida Punzalan 1 , Ariana Bitton 4 , Casey J. Lee 4 , Hebert A. Vargas 1 , Soobin Park 5 , Lisa Bodei 1 , Michael G. Kharas 2 , Vijay K. Singh 6,7 , Naga Vara Kishore Pillarsetty 1,8 *,Steven M. Larson 1,2,8 * 1 1 1放射科,纪念斯隆·肯特林癌症中心,纽约,纽约,纽约,2分子药理学计划,纪念斯隆·斯特里·肯特林癌症中心,纽约,纽约州纽约州纽约市亨特学院,纽约市纽约市纽约市纽约市纽约市纽约市,纽约市纽约市,纽约市,纽约州,纽约市,纽约州,药理学和分子治疗学,F。EdwardHébert医学院,统一服务大学卫生科学大学,贝塞斯达,MD 7武装部队放射线生物学研究所,制服服务学院,校制卫生科学大学,贝塞斯达大学,贝塞斯达大学,医学博士8号,医学博士8岁,威尔康尔医疗学院
我的宝宝刚刚接种了 MenB 疫苗,我现在应该注意什么?接种任何疫苗后都可能发烧,但在 2 个月和 4 个月时与其他常规疫苗一起接种 MenB 疫苗 (Bexsero) 时发烧更为常见。如果不服用扑热息痛,超过一半的婴儿在接种这些疫苗后会发热。发烧通常在接种疫苗后约 6 小时达到高峰,并且几乎总是在 2 天内完全消失。发烧表明婴儿的免疫系统对疫苗有反应,尽管发烧程度取决于每个孩子,并不能表明疫苗对婴儿的保护效果如何。
摘要 蜜蜂利用蜂王浆控制的 DNMT3 介导的表观遗传机制产生两种不同的雌性种姓,即长寿的可育蜂王和短命的不育工蜂。幼虫中 DNMT3 的抑制作用模拟了蜂王浆在成年雌蜂中发生的表型变化。蜜蜂基因组中需要解决的一个关键问题是确定蜂王浆中抑制 DNMT3 并从而决定发育命运的表观遗传活性化合物。进行了分子对接、MMGBSA 分析和 MD 模拟,以确定蜂王浆中抑制 DNMT3 的主要候选多酚化合物。十三种多酚化合物与 DNMT3 对接,并使用两个基本指标 XP GScore 和 MMGBSA dG Bind 来评估结合亲和力。观察到的结合亲和力最高的是木犀草素 7-O-葡萄糖苷,对接得分为 −10.3,山奈酚 3-O-葡萄糖苷为 −8.9。此外,这两种化合物的总结合能分别高达 −52.8 和 −64.85 kJ/mol。MD 模拟表明,与山奈酚 3-O-葡萄糖苷不同,木犀草素-7-O-葡萄糖苷在整个模拟期间与 DNMT3 保持一致的相互作用。这些结果表明,在蜂王浆中的 13 种多酚化合物中,木犀草素-7-O-葡萄糖苷是最有希望成为这种饮食中负责大部分 DNMT3 抑制活性的成分的候选者。
摘要:近年来,越来越多的证据表明,大麻素,尤其是非精神活性化合物大麻二酚 (CBD),具有良好的医学和药理活性,可能使其成为潜在的抗肿瘤药物。本综述基于多项研究,总结了 CBD 如何靶向肿瘤细胞(包括大麻素受体或内源性大麻素系统的其他成分)的不同机制,以及它们如何复杂地激活生物系统,从而抑制肿瘤生长。CBD 还参与与肿瘤进展相关的抗炎活性,如临床前模型所示。尽管临床试验和测试的肿瘤实体数量有限,但有明确的证据表明 CBD 具有抗肿瘤功效,并且在人类癌症患者中耐受性良好。总之,CBD 似乎具有作为癌症治疗的新辅助和/或辅助药物的潜力。
连续的高强度光暴露会抑制厌氧铵氧化(Anammox)细菌,尽管对Anammox反应堆性能的特定影响尚不清楚。这项研究研究了长期光应力对Anammox污泥反应堆的影响,并探讨了茶多酚作为减轻照片氧化损害的振奋干预措施的使用。结果表明,反应器的氮去除效率(NRE)在10,000 Lx的光条件下迅速恶化至41.4%。然而,补充了1mg·l -1和5mgÅL -1茶多酚的反应器分别为75.2%和82.5%。通过清除活性氧(例如×OH和H 2 O 2),以及增强包括总超氧化物歧化酶和gluta thione thione过氧化物酶的活性,添加茶多酚通过清除活性氧的氧化应激来减轻氧化应激。Kuenenia念珠菌受到光的负面影响,而未分类的_f__肉胶质科则在光压力下繁荣发展。这些发现为在光照暴露下开发稳定的氮去除系统的开发提供了见解。
lupeol是存在于几种植物中的一种天然存在的五囊三萜类化合物,被归因于具有抗癌,抗寄生虫和抗炎特性。由于其已知的抗疾病和免疫调节活性,对硅酸盐进行了一项有关其潜在的相互作用与SARS-COV-2的各种表面蛋白的相互作用,SARS-COV-2是导致COVID-19的冠状病毒。分子对接表明,它与SARS-COV-2-2蛋白有效结合,这些蛋白对病毒的生命周期,结构完整性和毒力至关重要。它在主要蛋白酶,核蛋白酶磷蛋白,木瓜蛋白酶样蛋白酶,RNA依赖性RNA聚合酶和峰值糖蛋白上显示出高结合亲和力。还分析了其对免疫信号通路至关重要的各种蛋白质的可能靶标,以及其细胞吸收,分布,排泄,代谢和毒性。这些发现表明,卢底酚是一种潜在的候选药物作为针对冠状病毒和免疫相关疾病的抗病毒药物。
摘要帕金森氏病(PD)是一种慢性神经退行性疾病,在65岁以上的人中常见,其特征是黑色物质中多巴胺能神经元的丧失,导致大脑中多巴胺的降低。随着时间的流逝,常规治疗(例如多巴胺给药)的有效性有限,这可能会导致晚期运动障碍。寻求新的治疗选择,大麻素(例如大麻二醇(CBD)),由于其对各种生物学途径的调节潜力,包括减轻运动和非运动症状,以及打击炎症和氧化应激。这项研究旨在进行系统的文献综述,以根据PRISMA协议评估CBD对运动和非运动症状的影响。在PubMed和Lialacs数据库中搜索了英语,葡萄牙语和西班牙文章,直到2023年。研究揭示了各种结果:在疼痛控制和生活质量方面有一些指示的益处,但也指出诸如嗜睡和头晕等不利影响。CBD在改善运动症状方面的功效不一致,与THC的组合对某些患者的认知产生了负面影响。研究表明,CBD可能有助于治疗PD的非运动症状,但是需要更严格,更大的样本研究以确认其长期影响并确定哪些患者将从这种疗法中受益。关键字:帕金森氏症;大麻二醇;神经变性。摘要帕金森氏病(PD)是一种慢性神经退行性疾病,在65岁以上的人中很常见,其特征是尼格拉省的多巴胺能神经元丧失,导致多巴胺在
抽象的多酚在所有植物化学物质中都是最大的化合物组之一。饮食多酚的常见来源是蔬菜,水果,浆果,谷物,全谷物等。由于其原始形式,它们很难被吸收。进行肠道微生物代谢后的饮食多酚形成了可访问和有效的代谢物。多酚和衍生的代谢物都是一组多样化的化合物,这些化合物表现出针对心血管,癌症,氧化应激,炎症和细菌疾病的药理活性。形成的代谢产物有时比母亲多酚更具生物利用和有效性。饮食多酚的肠道微生物代谢的研究引入了以补充饮食形式使用富含多酚食品的新方法。本综述提供了有关各个方面的见解,包括多酚的分类,多酚的肠道微生物介导的代谢,多酚代谢的化学以及多酚肠道微生物代谢物的药理作用。它还表明使用来自海洋来源的多酚用于微生物代谢研究。迄今为止,与海洋多酚相比,对陆生源多酚的肠道微生物代谢进行了广泛的研究。海洋生态系统是一个深刻但部分探索的植物成分来源。其中,食用海藻含有高浓度的多酚,尤其是菲洛丁蛋白。因此,对海藻的微生物代谢研究可以揭示海洋多酚衍生代谢产物的药理潜力。