上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。
摘要自闭症谱系障碍(ASD)被认为是一种多因素疾病,与遗传性和非遗传学原因相关,在幼儿期间的发展占主导地位,并且损害了身体生长本身的认知,社会和情感领域。 div>没有针对自闭症的特定药物,并且使用了几种药物来缓解与ASD相关的症状,也有关于使用Canabidiol的非常讨论。 div>这项工作是对文献的系统评价,目的是更多地了解使用大麻二酚来帮助治疗ASD患者。 div>发现的结果表明,ASD与内源性大麻素系统之间的关系很强,尤其是在CB1和CB2受体中。 div>大多数作品都表明,使用大麻二酚比副作用或不良反应带来的好处更多,主要用于改善ASD的体征和症状。 div>因此,得出结论
一些利益相关者声称,REACH 法规更适合保护儿童免受玩具中双酚的危害。然而,现实情况并非如此,因为目前尚不清楚 REACH 何时会针对双酚采取进一步行动。欧盟委员会表示,将根据德国限制某些双酚的提案结果,调查对影响人类健康的双酚的潜在限制。然而,德国的限制提案已被撤回,导致未来几年无所作为。与此同时,我们已经知道,由于以下原因,至少有 34 种双酚可能需要受到限制
摘要:多酚是在各种植物和食物中发现的化合物,这些化合物以抗氧化剂和抗渗透性特性而闻名。最近,研究人员一直在探索在藻类,鱼和甲壳类动物中发现的海洋多酚和其他少量营养物质的治疗潜力。这些化合物具有独特的化学结构,并且具有多种生物学特性,包括抗炎性,抗氧化剂,抗菌和抗肿瘤作用。由于这些特性,正在研究海洋多酚作为治疗多种疾病的可能治疗剂,例如心血管疾病,糖尿病,神经退行性疾病和癌症。本综述着重于海洋多酚及其在人类健康中的应用,以及在海洋酚类类别中,提取方法,纯化技术和海洋酚类化合物的未来应用。
对乙酰氨基酚(N-乙酰氨基酚)是世界上使用最广泛的非处方药。尽管对孕妇来说是安全的,但人们担心对乙酰氨基酚的致畸作用。本研究旨在观察对乙酰氨基酚对发育胚胎的致畸作用。使用鸡胚胎,将胚胎孵化 48 小时,然后注射 3 种浓度的对乙酰氨基酚,即 10 ppm、15 ppm 和 20 ppm。对照组和治疗组由 3 个可育胚胎重复组成。然后,将胚胎在孵化器中再次孵化 48 小时。通过观察任何发育变化来描述性地进行数据分析。结果表明,对乙酰氨基酚导致头部扩大和心脏水肿。暴露于浓度为 15 ppm 和 20 ppm 的对乙酰氨基酚会影响鸡胚的形态,尤其是头部的形成,并破坏血管生成过程和正常心脏的形成,在较高浓度下会导致出血和水肿。关键词:异常;鸡胚;发育;对乙酰氨基酚。简介对乙酰氨基酚(对羟基乙酰苯胺)是乙酰氨基酚(N-乙酰氨基酚)的通用名称,是一种非处方 (OTC) 药物,用作镇痛药和解热药(Sharma 和 Mehta,2014 年)。除了疼痛和发烧之外,它还常用于缓解头痛,可单独使用或与其他偏头痛药物(如咖啡因和非甾体抗炎药 (NSAID))联合使用(Pini 等人,2008 年),并用于治疗新生儿动脉导管未闭(Ohlsson 和 Shah,2020 年)。它是世界上最常用的药物之一(Moore 和 Moore,2016 年;Becker,2015 年)。超过 50% 的孕妇在怀孕期间使用对乙酰氨基酚(Lupattelli 等人,2014 年;Werler 等人,2005 年)。现有指南建议在怀孕期间以尽可能低的剂量和尽可能短的时间来使用对乙酰氨基酚,如果需要长期使用,建议咨询健康专业人士(欧洲药品管理局,2019 年;食品药品监督管理局,2019 年)。
大麻二醇(CBD)是在大麻sativa植物中发现的萜类化合物大麻素(Elsohly等,2017)。CBD在最近的临床试验中表现出了很大的治疗潜力(Millar等,2019),并且越来越多地用于治疗焦虑,癫痫,慢性疼痛和其他疾病(Arnold等,2020)。虽然开了一些CBD产品(例如epidiolex),使用非处方CBD在欧洲和北美也很常见,在欧洲和北美,可以在柜台上购买含CBD的“营养”(Goodman等,2020; Manthey,2019)。与其他主要植物衍生的大麻素不同,δ9-四氢大麻酚(δ9-thc)(Arkell等,2019,2020),CBD似乎没有“ inxcate”,或者易于辨别的主体效应(Arkell等,2020; 2020; 2020; arndt; arndt; sp de witle; sp; sp; sp; sp; sp; sp eld; ses and 2017;但是,鉴于社区使用的实质性和增加,CBD对认知要求苛刻的安全敏感任务(例如驾驶)的影响值得进行调查。几项研究表明,CBD不会损害离散神经心理学测试的认知表现(McCartney等,2020),但只有一个直接投资了其对驾驶性能的影响(Arkell等,2020)。这项随机的安慰剂对照试验涉及偶尔的
大麻中的化合物,仍然难以捉摸。这项研究旨在定义子宫大麻二酚(CBD)暴露对产后葡萄糖调节的影响。怀孕的Wistar大鼠大坝每天接受腹膜内注射车辆溶液或3 mg/kg的CBD,从妊娠日(GD)6到分娩。CBD暴露并未导致孕产妇或新生儿结局的可观察到的变化;然而,尽管胰腺β/α细胞质量没有变化,但在男性CBD暴露的后代暴露的后代暴露的后代不耐受。对这些CBD暴露雄性肝脏的转录组分析显示,昼夜节律时钟机械的基因表达改变了,这与全身性葡萄糖不耐症有关。此外,还观察到了肝发育和代谢过程的改变,这表明妊娠CBD暴露对整个生命的肝脏健康具有持久的有害影响。共同表明,在怀孕中仅接触CBD可能对后代后代的代谢健康有害。
Arlinghaus,R.,Abbott,J.K.,Fenichel,E.P。,Carpenter,S.R.,Hunt,L.M.,Alós,J。等。(2019)意见:管理全球渔业的休闲维度。美国国家科学院的会议记录,116(12),5209–5213。 可从:https://doi.org/10.1073/pnas.19027 96116 Arlinghaus,R.,Braun,M.,Dhellemmes,F.,Ehrlich,E.,Feldhege,Feldhege,Feldhege,F.H. (2023)Boddenhecht-Ökologie,Nutzung unt Schutz von Hechten,位于DenKüstengewässernMecklenburg- Vorpommerns。 Berichte des Igb,乐队33。 Arlinghaus,R.,Lucas,J.,Weltersbach,M.S.,Kömle,D.,Winkler,H.M.,Riepe,C.等。 (2021)垂钓者,渔民和co剂之间的利基及其对鱼类生物量的去除:来自波罗的海南部的咸泻湖生态系统的案例。 渔业研究,238,105894。 可从:https://doi.org/10.1016/j提供。 Fishres.2021。105894美国国家科学院的会议记录,116(12),5209–5213。可从:https://doi.org/10.1073/pnas.19027 96116 Arlinghaus,R.,Braun,M.,Dhellemmes,F.,Ehrlich,E.,Feldhege,Feldhege,Feldhege,F.H.(2023)Boddenhecht-Ökologie,Nutzung unt Schutz von Hechten,位于DenKüstengewässernMecklenburg- Vorpommerns。Berichte des Igb,乐队33。Arlinghaus,R.,Lucas,J.,Weltersbach,M.S.,Kömle,D.,Winkler,H.M.,Riepe,C.等。 (2021)垂钓者,渔民和co剂之间的利基及其对鱼类生物量的去除:来自波罗的海南部的咸泻湖生态系统的案例。 渔业研究,238,105894。 可从:https://doi.org/10.1016/j提供。 Fishres.2021。105894Arlinghaus,R.,Lucas,J.,Weltersbach,M.S.,Kömle,D.,Winkler,H.M.,Riepe,C.等。(2021)垂钓者,渔民和co剂之间的利基及其对鱼类生物量的去除:来自波罗的海南部的咸泻湖生态系统的案例。渔业研究,238,105894。可从:https://doi.org/10.1016/j提供。Fishres.2021。105894