US 003224956043 SAWYER PK ALTAJUMP MARIUS PRO UNION EVOLUTION 186 82 57 106 1,8 6,8 1419 1,3 1,5 1,4 78 327 0,2 0,4 -0,5 -0,2
摘要:栽培番茄(Solanum lycopersicum)是世界上经济价值最高、种植最广泛的蔬菜作物之一。然而,番茄植株经常受到生物和非生物胁迫的影响,从而降低产量并影响果实品质。栽培番茄的表型多样性很明显,特别是园艺性状,但遗传多样性相当狭窄。针对病毒、真菌、细菌和线虫等不同病原体的主要抗病基因主要来自野生番茄品种,并渗入栽培番茄中。在这里,我们列出了在 S. pimpinellifolium、S. habrochaites、S. peruvianum、S. chilense、S. pennellii、S. galapagense、S. arcanum 和 S. neorickii 中发现的主要病虫害抗性基因,并展望了当前对番茄野生近缘种的了解与所需了解之间的差距。
在过去的几十年中,植物生物技术的进步允许开发转基因的玉米品种,这些品种显着影响了农业管理并改善了全球的谷物产量。迄今为止,转基因的品种占世界玉米培养区域的30%,并结合了除草剂,昆虫和疾病耐药性,非生物胁迫耐受性,高产量和提高的营养质量等性状。玉米转化是转基因玉米发展的先决条件,不再是主要的瓶颈。使用形态调节剂的方案已显着发展,以增加转化频率和基因型独立性。使用稳定或瞬态表达和组织培养方法的新兴技术,例如使用RNA引导的内核酸酶系统作为一个体内所需的靶标的突变器,同时双倍型产生和编辑/单倍倍倍倍型诱导者介导的基因组介导的基因组编辑和plulen presection sextres sextress sex sepress,本综述总结了玉米转换方案,技术和应用的重大进展,并讨论了当前状态,包括针对特征发展的管道以及与当前和未来的基因和遗传修改和遗传编辑的玉米品种有关的调节问题。
我们已为六倍体普通小麦品种“Fielder”建立了高质量的染色体水平基因组组装,Fielder 是美国软质白色糕点型小麦,于 1974 年推出,以易受农杆菌介导的转化和基因组编辑而闻名。使用 HiFi 方法的 PacBio 环状共识测序获得了准确的长读序列。使用 hifiasm 组装器组装的 16 个 SMRT 细胞的序列读数产生了 N50 大于 20 Mb 的组装体。我们使用 Omni-C 染色体构象捕获技术将重叠群排序为染色体水平组装体,得到 21 个伪分子,累计大小为 14.7,未锚定重叠群为 0.3 Gb。对含有已编辑的种子休眠基因 TaQsd1 的转基因小麦植物的已发表短读段进行定位,确定了转基因插入小麦染色体的四个位置。在伪分子中检测向导 RNA 序列为脱靶突变诱导提供了候选。这些结果证明了使用 PacBio HiFi 读段进行染色体规模组装的效率及其在小麦基因组编辑研究中的应用。
本研究的目的是使用几种神经网络模型来估算奶牛的长重:卷积人工神经网络用于通过图片识别奶牛并确定其品种,随后通过立体视觉法确定其身体尺寸,随后利用多层感知器根据有关奶牛的品种和尺寸信息估算奶牛的长重。为了更准确地估计动物的身体参数,还使用了 3D 摄像头(Intel RealSense D435i)。应当注意,由于 3D 摄像头的分辨率低,单独使用不会产生良好的效果。因此,使用摄影测量法从不同角度拍摄的奶牛图像来确定奶牛身体参数。通过摄影测量获得了奶牛的肩高(WH)、臀高(HH)、体长(BL)和臀宽(HW)等参数。使用这些参数(输入参数 WH、HH、BL、HW 和输出参数 - LW),开发了基于 ANN 的模型估计。通过分析从不同角度同步摄像机拍摄的动物图像,可以确定奶牛的身体尺寸。首先,在图像中识别奶牛,并使用 Mask-rcnn 卷积神经网络确定其品种。然后通过立体视觉方法确定奶牛的肩高、臀高、身长和身宽,该方法可以获得数字图像中物体的几何参数并进行测量。数字成像和摄影测量处理包括几个完全确定的步骤,可以生成动物身体的三维或二维数字模型。然后将获得的有关物种及其大小的数据输入到预测模型,该模型确定动物的估计体重。
US 003224956043 SAWYER PK ALTAJUMP MARIUS PRO UNION EVOLUTION 186 82 57 106 1,8 6,8 1419 1,3 1,5 1,4 78 327 0,2 0,4 -0,5 -0,2
水稻条纹病是一种由昆虫传播的病毒性疾病,不仅在日本,而且在东亚地区都造成了严重的损失。由于含有抗性基因的品种有助于控制这种疾病,因此需要快速识别抗性基因的技术。以往的生物测定方法不仅需要准确判断有无抗性的技术,还需要饲养带病毒昆虫和栽培试验植物的设备,因此近年来利用水稻条纹病抗性DNA标记选育抗性个体的育种已成为主流。鉴于此情况,从2023年起,水稻品种登记审查也将采用DNA标记进行特性评估。这里就分别介绍这两种情况下所使用的水稻条纹病抗性DNA标记。
在过去的几十年里,非法砍伐对热带非洲森林生态系统的完整性和生物多样性保护构成了严重威胁。尽管已经实施了减少非法砍伐的国际条约和监管计划,但大部分木材都是从热带非洲森林地区非法砍伐和交易的。因此,开发和应用分析工具来提高木材和相关产品的可追溯性和识别性对于执行国际法规至关重要。在现有技术中,DNA 条形码是一种很有前途的植物物种分子鉴定方法。然而,虽然它已成功用于区分动物物种,但还没有一套可用于普遍识别植物物种的遗传标记。在这项工作中,我们首先使用基因组略读方法表征了 17 种非洲高价值木材物种的遗传多样性,这些物种来自五个属(Afzelia、Guibourtia、Leplea、Milicia、Tieghemella),分布在西非和中非的范围内,以便重建它们的叶绿体基因组和核糖体 DNA。接下来,我们确定了单核苷酸多态性 (SNP),以区分近亲物种。通过这种方式,我们成功开发并测试了用于物种识别的新型物种特异性遗传条形码。
© 作者 2021。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。
1 美国农业部农业研究服务处西部地区研究中心,美国加利福尼亚州奥尔巴尼,2 Takara Bio USA, Inc.,美国加利福尼亚州山景城,3 美国纽约州纽约市哥伦比亚大学医学系,4 美国纽约州纽约市哥伦比亚大学人类营养研究所,5 德国汉堡汉堡大学食品科学学院、食品化学研究所,6 美国堪萨斯州曼哈顿市美国农业部农业研究服务处谷物与动物健康研究中心硬质冬小麦品质实验室,7 美国纽约州纽约市哥伦比亚大学乳糜泻中心,8 美国纽约州瓦尔哈拉纽约医学院医学系