› 综合处理厂泵送量连续三天超过 3600 万加仑(处于第 2 阶段水警触发参数时),或哈伯德溪水库和幻影山堡湖的综合储水量消耗至 20% 以下;或主要管道破裂或泵系统故障,导致提供服务的能力前所未有的损失;或任何不可预见的情况。
在这里,我们提出了一种镜面对称魔术角扭曲三层石墨烯的理论。通过具有远距离隧道矩阵元素的哈伯德模型来描述电子特性。通过求解平均场哈伯德模型获得电子性能。我们获得具有特征性平坦带和狄拉克锥体的带结构。在电荷中立性时,打开电子电子相互作用会导致金属至抗磁相变,其Hubbard相互作用强度比其他石墨烯多层小得多。我们分析了抗铁磁状态的固定性对六角硼氮化物封装引起的对称破裂的性能,以及由将狄拉克锥与平面带混合的电场的应用引起的镜像破坏。此外,我们探索了系统的拓扑特性,揭示了隐藏的量子几何形状。尽管平坦的频带为零,但在MoiréBrillouin区域上的多型浆果曲率分布表现出非平凡的结构。最后,我们提出了一种调整此量子几何形状的机制,提供了控制系统拓扑特性的途径。
高温超导体领域中的一个核心问题之一是,对于某些研究人员而言,库层中的问题是否是纯粹的反击互动引起的,正如安德森二十年前所提出的那样。1这个问题已在二维2D排斥枢纽模型和相关T-J模型的框架中进行了广泛的研究。最近的进步,无论是在动态均值字段理论2、3和变化计算中,4都加强了哈伯德模型中超导阶段存在的情况,D -Wave间隙参数合理地接近实验值的实验值,用于实验值的中间相互作用强度U的中间相互作用强度。根据蒙特卡洛模拟,这一结论受到了挑战,我们认为这不是结论性的,如下所述。大多数对哈伯德模型的研究都仅限于最近的邻居跳跃,那里电子与孔掺杂没有差异。在这里,我们表明,添加第二个邻次跳跃会破坏电子孔对称性,从而实质上改变了这种行为。虽然掺杂孔的侧是“局部”的,并且显示具有较大的凝结能的动能驱动的超导性,但电子掺杂的一侧是巡回的,具有潜在的能量驱动的超导性和较小的凝结能。Hubbard Hamiltonian H = h = H ˆ 0 + ud ˆ由一个跳跃术语“动能”
相互作用的费米式系统的自发对称破坏是多体理论的主要挑战,这是由于新独立散射channels的扩散曾经在对称阶段不存在或退化。一个例子是由哈伯德模型的铁 /抗磁性破碎对称相(BSP)给出的,其中旋转横向和自旋宽量义通道中的顶点与计算能力的随之增加,以增加计算的计算能力。我们将非扰动的两粒子一致的方法(TPSC)传达出Hubbard模型中的磁相(2)磁相,提供了一种有效的方法,具有牢固的相关性。我们表明,在BSP中,易感性的总规则执行必须伴随着修改的间隙方程,从而导致订单参数,顶点校正和保留金色模式的间隙特征的恢复。然后,我们将理论应用于半填充的立方晶格中哈伯德模型的抗铁磁相。我们将双重占用和交错磁化的结果与使用图表的蒙特卡洛获得的结果进行了比较。我们证明了verx校正在降低希格斯在自旋长态敏感性中的准粒子激发差距方面的核心作用,从而产生了可见的希格斯模式。
图s1:使用不同方案的反应能的误差,以哈伯德校正处理含有Fe的氧化物和硫化物。所有方案使用U Fe = 4。0EV。氧化物仅使用U Fe = 4。0EV,而不是硫化物,而GGA+U能量通过∆ e m项(1.787 eV)校正,因此可以将其与GGA计算混合。MP方案仅使用与氧化物相同的方法,但是使用其设置和校正直接通过材料项目API获得能量(U FE =5。3ev,∆ e m = 2。733)。
我们系统地检查了多距离跳跃及其与扩展相互作用的协同作用会导致光对。对对具有较大现场排斥(𝑈)的稀释延长哈伯德模型,以及近近和下一期的邻居跳跃(𝑡'和𝑡')和吸引力(𝑉'和𝑉'),用于立方体和四方lattices。 𝑡'和𝑉'的存在促进了光对。 对于四方晶格,𝑡'<0对可以比非相互作用的颗粒更轻,并且形成了 - 对称对。 估计对bose-Einstein凝结(BEC)的紧密填料过渡温度𝑇∗,为𝑘∼〜0。 1𝑡,其中𝑡是笛卡尔轴上跳的几何平均值。 当对具有𝑑-对称性时,冷凝水具有𝑑波特性。 因此,存在𝑡'和𝑉''的存在会无处不在地导致很小的强结合对,其逆质量是线性的,这可能导致高温BEC。对具有较大现场排斥(𝑈)的稀释延长哈伯德模型,以及近近和下一期的邻居跳跃(𝑡'和𝑡')和吸引力(𝑉'和𝑉'),用于立方体和四方lattices。𝑡'和𝑉'的存在促进了光对。对于四方晶格,𝑡'<0对可以比非相互作用的颗粒更轻,并且形成了 - 对称对。估计对bose-Einstein凝结(BEC)的紧密填料过渡温度𝑇∗,为𝑘∼〜0。1𝑡,其中𝑡是笛卡尔轴上跳的几何平均值。当对具有𝑑-对称性时,冷凝水具有𝑑波特性。因此,存在𝑡'和𝑉''的存在会无处不在地导致很小的强结合对,其逆质量是线性的,这可能导致高温BEC。
摘要:配对密度波(PDW)是一种长期以来的外来超级构造状态,其库珀对具有没有磁场的有限动量。已在各种系统(例如Cuprates,Fe基超导体和Kagome超导体)等各种系统中报道了PDW的实验证据。然而,它在确定的二维显微镜模型中具有挑战性,其基态以PDW超级导管顺序为基础。在这次演讲中,我将主要讨论三角晶格霍尔斯坦 - 哈伯德模型,在扭曲的双层WSE2模型和Honeycomb Lattice Spin Polarmized电子模型中实现PDW超导性的Mi-Croscopic理论。
我们引入了连接的确定性算法的自旋对称性破裂扩展[Phys。修订版Lett。 119,045701(2017)]。 在抗铁磁状态周围产生的系统扰动膨胀允许直接在磁有序相内进行数值精确的计算。 我们在半完成时显示了三维立方哈伯德模型的磁相图和热力学的新精确结果。 通过在低至中间耦合方面的顺序参数的详细计算,我们建立了N´Eel相边界。 其附近的批判行为与O(3)海森堡普遍性类别兼容。 通过确定熵的演变,通过相变的温度降低,我们确定了在U/T = 4时的不同物理状态。 我们为抗铁磁圆顶内部深处的几个热力学量提供定量结果,直至较大的相互作用强度,并研究Slater和Heisenberg Corgimes之间的交叉。Lett。119,045701(2017)]。在抗铁磁状态周围产生的系统扰动膨胀允许直接在磁有序相内进行数值精确的计算。我们在半完成时显示了三维立方哈伯德模型的磁相图和热力学的新精确结果。通过在低至中间耦合方面的顺序参数的详细计算,我们建立了N´Eel相边界。其附近的批判行为与O(3)海森堡普遍性类别兼容。通过确定熵的演变,通过相变的温度降低,我们确定了在U/T = 4时的不同物理状态。我们为抗铁磁圆顶内部深处的几个热力学量提供定量结果,直至较大的相互作用强度,并研究Slater和Heisenberg Corgimes之间的交叉。
我们考虑在数字量子计算机上模拟量子系统。我们表明,通过同时利用目标汉密尔顿的交换性,相互作用的稀疏以及初始状态的先验知识,可以通过利用量子模拟的性能来提高量子模拟的性能。我们实现了涵盖各种物理系统的一类相互作用的电子(包括平面波 - 巴西电子结构和费米 - 哈伯德模型)的动力化。我们通过在η-电子歧管中嵌套术语的嵌套换向器来估计模拟误差。我们开发了多种技术来界定一般费米子操作员的转移幅度和期望,这可能是独立的。我们表明,它可以使用N 5/3η2 / 3 + N 4/3η2 / 3 N O(1)< / div>