开始勘测天空 南希·格雷斯·罗曼空间望远镜被列为 Astro2010 十年调查中大型太空任务的最高科学优先级,它将在 2020 年代及以后的天体物理学中发挥关键作用。 扩大我们的视野 罗曼的 WFI 将以比哈勃快 1,000 倍的速度勘测天空,收集近红外成像和光谱数据,具有哈勃质量的分辨率和灵敏度,视场比哈勃的 WFC3/IR 大 200 倍。 涵盖所有天体物理学 罗曼 WFI 数据是通过一般天体物理学调查以及计划中的核心社区调查收集的,将丰富天体物理学的研究,使人们能够研究可观测宇宙中几乎所有类别的天文物体、现象和环境。 开放数据访问 罗曼收集的所有数据都是非专有的,所有人都可以通过米库尔斯基空间望远镜档案 (MAST) 获得。罗马任务将在云端托管马赛克、目录和其他数据产品,并将与天文界合作创建开源数据缩减和分析工具。
ngst将帮助我们确定宇宙的几何形状,并使我们能够确定宇宙是否会继续扩展。今天,我们看到迹象表明,扩张实际上是在加速,而不是在重力的影响下欺骗其组成物质。ngst将能够在遥远的过去观察超新星。通过使用这些已知亮度的“标准蜡烛”,天文学家将能够测量宇宙的大小和几何结构。ngst对于研究神秘的暗物质的影响也将是独特的。我们知道,这种奇怪的物质形式占宇宙质量的90%以上。尽管NGST与其他望远镜一样,只能观察到发光的物体,但它将能够检测到由中等质量引起的最遥远星系的形状中的细微扭曲,而间隔质量的重力偏转引起的,这是无法直接看到的。
对于任何想被宇宙所震撼的人来说,这都是一个非凡的时代。自从最初的望远镜发明以来,发现的速度从未如此之快。例如,哈勃太空望远镜为我们提供了丰富的信息,包括这幅有史以来观测到的一些最古老星系的图像。哈勃太空望远镜于 1990 年 4 月从发现号航天飞机发射升空,预计任务将持续约 20 年。尽管它只有一辆大型牵引拖车那么大,但这个光学望远镜每周向地球发回约 120 千兆字节的科学数据。这些信息足以填满一公里长的书架上的所有书籍。在本章中,您将了解宇宙形成的时间和方式,以及支持这种理解的科学证据。您还将了解星系,星系中的恒星数量达数千亿。
我们讨论了膨胀时空是否可以在无限的过去中是测地线完备的。测地线完备性是避免永恒膨胀期间出现初始奇点的必要条件。人们经常争论说,膨胀速度足够快(平均哈勃膨胀率 H avg > 0 )的宇宙学模型在零和类时间过去方向上必定是不完整的。这个众所周知的猜想依赖于哈勃参数在过去指向的类时间或零测地线上积分的特定界限。如上所述,我们表明这一说法是一个悬而未决的问题。我们表明,对于给定的时空,H avg 的计算会产生一系列结果,这些结果基于底层的拓扑假设。我们提出了 H avg 的改进定义,并引入了一组不可数无限的宇宙学解,尽管 H avg > 0 ,但它们是测地线完备的。我们讨论了膨胀时空的标准化定义以及对物理上合理的尺度因子的量子(半经典)宇宙学关注。
On-On-On-On-Orbit服务(OO)包括一系列服务类型,以增加卫星的寿命及其性能,并确保它不会助长太空碎片的日益增长的问题。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。 在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。 这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。鉴于“巨型构成”的兴起,避免卫星被遗弃的人尤其重要。在1970年代的第一个案件中,使用从地面或宇航员控制的机器人和机器人(例如在维修和升级到哈勃太空望远镜(HST)和国际空间站(ISS))中,使用了从地面或宇航员控制的机器人多次实现了OOS。这使各种太空机构和其他组织可以为多种OOS任务类型的成熟流程和工具。
詹姆斯·韦伯太空望远镜揭开了最伟大的起源故事。韦伯是美国宇航局最新的顶级太空科学天文台——注定会像它的前身哈勃一样家喻户晓。这是美国宇航局科学的阿波罗时刻:韦伯将从根本上改变我们对宇宙的理解。它可以观察整个宇宙,从行星到恒星,从星云到星系甚至更远——帮助科学家揭开遥远宇宙以及离地球更近的系外行星的秘密。韦伯可以以精致的新细节探索我们太阳系的居民,并搜索有史以来第一个星系的微弱信号。从新形成的恒星到吞噬黑洞,韦伯将揭示所有这些以及更多。韦伯的设计旨在建立在其他航天器的突破性发现之上,例如哈勃太空望远镜和斯皮策太空望远镜。哈勃用可见光和紫外光观察宇宙,而韦伯则专注于红外线,这种波长对于透过气体和尘埃观察远处的物体非常重要。继斯皮策在红外领域开辟道路之后,韦伯将凭借面积几乎大 60 倍的主镜带我们走得更远。最后,韦伯的镜子不仅具有哈勃惊人的分辨率,而且灵敏度更高,并且可以在太空中完全调节。韦伯的大镜子和先进的仪器套件受到五层遮阳板的保护,遮阳板展开后大小可与网球场相当。整个天文台折叠起来以装入运载火箭,并在太空中展开。这种复杂的部署顺序从未在太空望远镜上尝试过,韦伯的惊人工程设计包括许多突破技术界限的创新。韦伯是人类智慧的壮举。该任务历时二十多年,来自 14 个国家和 29 个美国州的数千名科学家、工程师和其他专业人士为此做出了贡献。韦伯望远镜的发射是一个关键时刻,彰显了 NASA 及其合作伙伴欧洲航天局 (ESA) 和加拿大航天局 (CSA) 的奉献精神、创新精神和雄心壮志,但这仅仅是个开始。该天文台在太空中运行的六个月是一个令人兴奋但又令人紧张的时刻,在此期间,数千个部件和序列都必须在距离地球近一百万英里的地方正确地协同工作。当望远镜开始收集数据时,这一阶段达到高潮——这对任务、NASA、美国和全世界来说都是一个真正意义重大的庆典。基本天文学问题推动了韦伯望远镜独特的设计、尖端的能力和无与伦比的红外灵敏度——所有这些都旨在提供宇宙的新视角,并以非凡的科学发现激发我们的想象力。这是我们在了解人类在浩瀚宇宙中的地位方面向前迈出的一大步。
天文学 2020 概述:太空天文学涵盖了进行天文学和人类太空探索的物理原理。将在特定太空任务(例如哈勃太空望远镜、火星探测器、其他行星探测器)的背景下描述运载火箭和航天器、轨道动力学和仪器的基本设计,以及激发这些努力的天文学和行星科学。将讨论技术与科学、人类与机器人以及短期和长期科学与探索任务之间的平衡。天文学 2020 是一年级或二年级本科生学习空间科学和空间工程的绝佳入门课程。这门课被批准用于艺术与科学核心课程:自然科学。目标:1) 支配我们探索太空能力的基本物理定律是什么?2) 我们如何与人类和机器人一起探索太空?从阿波罗到航天飞机到国际空间站,再到未来。3) 机器人和人类航天器将如何前往火星?生活在一个陌生而充满敌意的世界会面临哪些挑战?我们还能探索太阳系的哪些地方?4)我们将从哈勃太空望远镜、詹姆斯·韦伯太空望远镜和 X 射线天文台了解到哪些有关宇宙的信息?下一代太空天文台如何量化宜居系外行星的频率?
• Interviews/Documentary Support • PBS RoadTrip Nation • PBS Museum Access • Traveling exhibit • Macon Museum of Arts and Sciences, Macon, GA • Putnam Museum and Science Center, Davenport, IA • Events • GSFC MD Business Round Table - Legacy of Light • Maryland STEM Festival • Astronomy Festival on the National Mall • Observe the Moon Night • Website • Consolidation of websites • 35 th Anniversary • Anniversary网站•哈勃夜空挑战赛•游览 - 〜40个控制中心之旅•活动•与您的宇宙邻居见面