该设施的用户已经开展了许多重要的研发项目。例如,火星探测器的电子模块在这里进行了测试。辐射对光纤、太阳能电池和太阳帆的影响也得到了研究。哈勃太空望远镜的光学元件暴露在质子辐照下,以确保其特性不会在太空辐射环境中发生显著改变。NASA 目前在 Tandem Van de Graaff 有两个正在进行的项目。一个是校准和测试国际空间站的剂量计,另一个是测试未来载人航天任务的主动航天器屏蔽。同时,这些加速器多年来一直被用作两个较大的 BNL 用户设施(RHIC 和 NSRL)的重离子预注入器。
在空军部长 James G. Roche 博士的指导下,空军技术学院 (AFIT) 于 2002 年在其位于俄亥俄州赖特-帕特森空军基地的校园内建立了系统工程中心 (CSE)。在由空军首席科学家 Alex Levis 博士担任主席的系统工程小组委员会的学术监督下,CSE 的任务是制定案例研究,重点研究系统工程原理在各种航空航天计划中的应用。在 2003 年 5 月的会议上,小组委员会审查了几个提案,并选定了哈勃望远镜(太空系统)、战区战斗管理核心系统(复杂软件开发)、F-111 战斗机(国防部长办公室参与的联合计划)和 C-5 货运飞机(非常大型的复杂飞机)。委员会起草了初步案例大纲和学习目标,并建议使用 Friedman-Sage 框架指导整体分析。
1990 年哈勃发射后,五次航天飞机任务飞往轨道天文台,为 EVA 宇航员进行维修和太空系统升级。日本发射了 ETS-VII 来演示机器人维修,它是第一颗配备机械臂的卫星。轨道快车是 DARPA 和 NASA 的联合任务,演示了 RPO、加油和模块更换。国际空间站经过数十年的多次飞行组装和维修,使用了来自美国(航天飞机)、国际合作伙伴(例如联盟号、进步号)和工业界(例如龙飞船、天鹅座)的各种飞行器。国际空间站的一系列 RRM 实验已经展示了使用专门工具存储和机器人传输流体,以及机器人操作合作和传统航天器接口。在国际空间站上,NASA 的 ISM 项目已经展示了加压空间内的各种制造能力。
美国宇航局戈达德太空飞行中心 (GSFC) 的探索与太空服务 (NExIS) 致力于通过太空服务和组装,开创一个更加可持续、经济实惠和弹性的近地、月球和太阳系深处的太空飞行时代。25 多年来,NExIS 动员了一支多学科技术团队,建立了硬件和软件基础设施,成功开发了 200 多种太空服务技术,并以其成熟、快速和经济的方法赢得了良好的声誉,以展示新功能。NExIS 的遗产包括五次成功的哈勃太空望远镜维修任务(1990-2009 年)、卫星服务能力办公室(2009-2016 年)和卫星服务项目部(2016-2020 年)。
木星的复杂氛围一直是臭名昭著的红色斑点以来,它一直是吸引人和灵感的根源,首先是17世纪的瞥见。地球上另一个伟大的谜团是在其极地地区看到的光芒。木星上的极光实际上与地球上的极光一样 - 在靠近地磁杆附近的位置看到的壮观的光线显示,尤其是在太阳活动增强的时期。南方的灯通常只有科学家或企鹅(他们不太在乎基础物理学)。然而,木星的极光仍然是其极点永久的固定装置,其功率输入了三个数量级,比陆地“极光灯”大。木星的极光是在各种电磁范围内成像的,最著名的是哈勃太空望远镜(HST),并以期待已久的詹姆斯·韦伯(James Webb)太空望远镜(JWST)的惊人品质成像。
在我们宇宙的数十亿个星系中,有数万亿个恒星系统,每个星系都有自己的行星、卫星、小行星和彗星。我们的星球存在于外太空的一个口袋中,我们很容易忘记我们的星球只是浩瀚宇宙中的一个太阳系。我们才刚刚开始揭开和解答宇宙和我们存在的奥秘,还有很多我们还没有找到答案。哈勃望远镜是现代历史上最著名的望远镜之一,因为它在帮助我们开始想象和理解我们称之为家园的宇宙方面发挥了关键作用。然而,尽管它对天文学的发展做出了重要贡献,但它过时的技术已经开始阻碍我们回答关于宇宙越来越复杂的问题。为了解决这个问题,美国宇航局最近发射了詹姆斯·韦伯太空望远镜 (JWST),以美国宇航局第二任局长的名字命名,他被认为是
最小的信息单位是比特,即二进制单位,其值为 0 或 1。在计算机科学中,这通常对应于对象的状态,即高或低,例如,单个像素的状态可以描述为开或关。换句话说,可以使用一个信息位来描述该像素的状态。此外,如果要抛硬币,只需要一个信息位来描述抛硬币的结果,0 可以表示反面,1 可以表示正面。下一节中将推导的贝肯斯坦边界是由雅各布·贝肯斯坦发现的,它提供了描述包含在半径为 𝑅 的球体中的物理系统所需的信息上限,直至量子水平。贝肯斯坦边界一直受到天体物理学家和宇宙学家的特别关注,最著名的是斯蒂芬·霍金,他发现描述黑洞所需的信息恰好等于贝肯斯坦边界。该项目从普朗克单位和哈勃常数的角度研究贝肯斯坦边界以及由此得出的结论。
从Falcon-1到Falcon-9 SpaceX在太空技术方面取得了巨大的进步。无论我们谈论阶段1的检索还是2020年10月的60颗星际林卫星的启动,Falcon-9无疑是这一时期最先进的火箭。空间探索声音本身是对某些研究人员的异常引人入胜的考试主题。要知道并考虑超过地球的哪些秘密一直是许多太空研究协会的基本意图。太空探索有许多优势。它允许推动科学并鼓励我们推动我们的资产。就像阿波罗任务和哈勃太空望远镜一样,在宇宙学方面提供了许多发现,并允许我们观看与地球上的微妙之处更为微妙的世界,星星和行星。绝大多数太空协会正在寻找可以维护人类生命的行星。这有助于扩大我们的生存能力以及在不同行星上寻找矿物质的助手,因为地球上的正常资产和矿物质以快速的速度耗尽。因此,在不同行星上寻找选择或更多矿物[1]至关重要。
我们提供了经验证据,表明在某些标准问题上,我们的方法比传统的建设性回溯方法效率高得多。例如,在 n 皇后问题上,我们的方法可以快速找到一百万皇后问题的解[28]。我们认为基于修复的方法之所以能够胜过建设性方法,是因为完整分配在指导搜索方面比部分分配更具信息性。但是,额外信息的效用取决于领域。为了帮助阐明这种潜在优势的性质,我们提出了一个理论分析,描述了各种问题特征如何影响该方法的性能。例如,该分析显示了当前分配和解决方案之间的“距离”(就所需的最少修复次数而言)如何影响启发式的预期效用。本文描述的工作受到 Adorf 和 Johnston [2, 22] 开发的一种令人惊讶的有效神经网络的启发,该网络用于安排哈勃太空望远镜的天文观测。