•在图1(a)中所示的基于对称的对称加密方案中,将消息及其哈希码串联在一起形成一个复合消息,然后将其加密并放在电线上。接收器解密了消息并将其标签分开,然后将其与从接收到的消息中计算出的哈希码进行比较。HashCode提供了对文档的身份验证 - 文档身份验证的意义是我们可以确定它与最初创建的相同 - 并且加密提供了确定性。[什么
写有关软件故障隔离(SFI)i的简短说明i。目标和解决方案,ii。SFI方法。 57。SFI方法。57。
描述各种方法用于实时PCR(定量PCR或QPCR)数据的统计分析和图形表示。'rtpcr'负责基于多达两个参考基因的实时PCR数据的扩增效率计算,统计分析和图形表示。通过考虑放大效率值的考虑,“ RTPCR”是由Ganger等人描述的一般计算方法开发的。(2017)和Taylor等。(2019),涵盖了livak和pfaffl方法。基于实验条件,“ RTPCR”包装的功能使用t检验(用于具有两级因子的实验),方差分析(ANOVA),协方差分析(ANCOVA)分析(ANCOVA)或重复测量数据分析以计算到calcu- colcu- flta delta delta delta delta delta ct方法(delta cta)或dela dela dela dela(re)(re)(re)。该功能进一步提供了平均值的标准误差和置信度间,采用统计平均比较并具有重要意义。为了促进功能应用,使用了不同的数据集作为示例,并解释了输出。“ RT- PCR”软件包还使用各种控制参数提供条形图。“ rtpcr”包装是用户友好且易于使用的,并提供了用于分析实时PCR数据的适用资源。
是它们的主要缺点。人们自然而然地希望将多个一次性签名密钥合并为一个。一种解决方案是所谓的基于链的签名 (CBS)[6,第 465-468 页]。在这些方案中,使用一些一次性签名协议作为基础。在对消息进行签名时,不仅对消息本身进行签名,而且还对新创建的一次性签名的公钥进行签名。在下一次签名期间,将使用此新签名以及另一个新创建的签名的公钥对新消息进行签名。这样就构建了一个签名链。要验证任何签名,必须提供整个链以及相应的公钥和从初始签名到当前签名的签名输入消息。使用初始公钥,可以轻松验证链中每个签名(包括目标签名)的真实性。本质上,消息的“签名”不仅是链中的最后一个一次性签名,而且是链的整个当前状态以及最后一个签名。然而,这种方法有一个明显的缺点:随着每个新签名的出现,签名的大小和验证签名所需的时间都会增加。
摘要 — 在当今的数字环境中,密码学通过加密和身份验证算法在确保通信安全方面发挥着至关重要的作用。虽然传统的密码方法依靠困难的数学问题来保证安全性,但量子计算的兴起威胁到了它们的有效性。后量子密码学 (PQC) 算法(如 CRYSTALS-Kyber)旨在抵御量子攻击。最近标准化的 CRYSTALS-Kyber 是一种基于格的算法,旨在抵御量子攻击。然而,它的实现面临着计算挑战,特别是基于 Keccak 的函数,这些函数对于安全性至关重要,也是 FIPS 202 标准的基础。我们的论文通过设计 FIPS 202 硬件加速器来提高 CRYSTALS-Kyber 的效率和安全性,从而解决了这一技术挑战。我们选择在硬件中实现整个 FIPS 202 标准,以扩大加速器对所有依赖此类哈希函数的可能算法的适用性,同时注意提供对片上系统 (SoC) 内系统级集成的现实假设。我们针对 ASIC 和 FPGA 目标提供了面积、频率和时钟周期方面的结果。与最先进的解决方案相比,面积减少了 22.3%。此外,我们将加速器集成在基于 32 位 RISC-V 的安全导向 SoC 中,我们在 CRYSTALS-Kyber 执行中展示了强大的性能提升。本文提出的设计在所有 Kyber1024 原语中表现更好,在 Kyber-KeyGen 中的改进高达 3.21 倍。
签名和验证过程。我们为 SPHINCS+ 提出了一种适应性并行化策略,分析其签名和验证过程以确定高效并行执行的关键部分。利用 CUDA,我们执行自下而上的优化,重点关注内存访问模式和超树计算,以提高 GPU 资源利用率。这些努力与内核融合技术相结合,显著提高了吞吐量和整体性能。大量实验表明,我们优化的 SPHINCS+ CUDA 实现具有卓越的性能。具体而言,与最先进的基于 GPU 的解决方案相比,我们的 GRASP 方案可将吞吐量提高 1.37 倍到 3.45 倍,并比 NIST 参考实现高出三个数量级以上,凸显了显著的性能优势。
LMS 系统能够有效地扩展以适应大量签名。HSS/LMS 算法是一种基于哈希的数字签名形式,它在 中进行了描述。HSS/LMS 签名算法只能用于给定私钥的固定数量的签名操作,签名操作的数量取决于树的大小。HSS/LMS 签名算法使用小公钥,计算成本低;但是,签名相当大。当签名者愿意在签名时执行额外计算时,HSS/LMS 私钥可以非常小;或者,私钥可以消耗额外的内存并提供更快的签名时间。HSS/LMS 签名在 中定义。目前,定义了使用 SHA-256 和 SHAKE256 的参数集。
在算法替代攻击的领域(ASA)中,我们朝着新的方向启动工作,即考虑对公共算法的这种攻击,这意味着不包含秘密的材料。示例是哈希函数,以及签名方案和非相互作用参数的验证算法。在我们所谓的PA-SA(公共载体替代攻击)中,大兄弟对手用颠覆算法代替了公共算法F,同时保留了后者的后门。我们认为,大兄弟的目标是使PA-SA成为三倍:它希望实用程序(它可以打破f-使用方案或应用程序),无法检测到(局外人无法检测到替代)和排他性(除了大兄弟以外的其他人都无法利用替代)。我们从F是任意的一般环境开始,对三个目标给出了强有力的定义,然后是我们证明遇到的PA-SA的构造。我们将其作为应用程序的应用程序,对哈希功能,签名验证和非交互性参数的验证,展示了新的有效方法来颠覆这些论点。作为前两个的进一步申请,我们在X.509 TLS证书上给出了PA-SA。尽管ASA传统上仅限于渗透秘密钥匙,但我们的工作表明,在没有截止钥匙的关键的情况下,它们在颠覆了公共功能方面是可能有效的。我们的建筑有助于防御者和开发人员通过说明如何建立攻击来确定潜在的攻击。
课程协调员:命名Mohamed Fathi Mohamed Mohamed Elrefai学术名称:屁股。Professor of Anatomy and Embryology Office Location: 3014, College of medicine, Hashemite University Telephone Number: 5604 Email Address: mohamed@hu.edu.jo mohamed@staff.hu.edu.jo Office Hours: Sunday: 11-1 Tuesday: 11.00-1.00 Instructors Name Mohamed Fathi Elrefai Academic title Assistant professor of Anatomy & Embryology Office location 3014, 3 rd floor,伊本·西纳(Ibn Sina)医疗学院综合大楼通过电子邮件发送电子邮件至mohamed@hu.edu.jo办公室时间星期日:11-1,星期二:11-1名称Ashraf Sadek学术冠军解剖学和胚胎学办公室助理教授位置3031,IBN SINA SINA医疗机构3楼3楼3031位置3015,IBN SINA医疗学院综合大楼Amany @hu.edu.jo办公时间星期日:上午11点,星期三,星期三:上午11点至11点,名称Mustafa Yousef