飞机或旋翼机燃气涡轮发动机某些关键子系统的电气化为下一代航空发动机提供了许多宝贵的优势,如减轻重量、降低能耗、提高子系统和整个推进系统的效率、加快响应速度、更快更容易维修、比液压和气动系统可靠性更高、减少油耗、提高有效载荷能力、降低总生命周期成本、提高可维护性、发动机维护和操作更清洁、更好地分配机载资源、为维护和客户提供实时数据、提高健康监测能力等。发动机子系统的电气化还可以开发新的创新型飞机和发动机配置,例如,去除笨重而复杂的(发动机和/或飞机)附件驱动变速箱(ADG)或为 IGV、推力反向器门或任何其他可变几何部件引入和使用更多的 EMA(机电执行器)。在发动机和子系统(如润滑系统)中集成更多更智能的传感器是另一个明显的优势(例如油渣监测传感器或油箱液位传感器)。还将讨论更多电气子系统的集成,并了解与电源和热管理相关的固有风险(参见 AVT-RTG-333“将推进、电源和热子系统模型集成到飞行器概念设计中”)。因此,建议对涡扇和涡轴子系统电气化的当前趋势进行分析,并组织关于此主题的 RSM,目的是将 AVT 小组定位在此技术发展的前沿。背景
本文提出了一种用于直流微电网的氢基储能系统 (ESS),该系统可以与电池储能系统集成,以满足未来可再生能源渗透率高的电网的需求。氢基储能系统能够长时间提供稳定的能源供应,但与电池储能系统相比,其响应速度较慢。然而,电池和氢存储的组合可以在很长一段时间内提供稳定的能量,并且可以轻松处理微电网的突然需求和过剩。该系统的主要挑战之一是将电力电子与燃料电池技术相结合,以适当地将可再生能源转化为电能。所提出的系统使用隔离的 DC-DC 转换器来激活氢气的生产,并使用电解器将产生的氢气转化为氢压。氢压成为我们燃料电池的重要输入,燃料电池调节氢压并将其转化为电能。然后,通过使用 DC-DC 升压转换器将产生的电能传递给不同的负载。为了验证所提电路的有效性,使用 1 kV DC 总线电压氢 Simulink 仿真来演示基于负载需求和剩余功率的氢气生产和燃料电池行为。所提系统模拟了完整氢能存储系统所需的功率转换、电解器、储罐和燃料电池的各个方面。聚合物电解质膜因其经济可行性而成为电解器和燃料电池的主要关注技术。
摘要 - 该系统文献综述旨在分析插槽方法对仓库和供应链管理的影响。接下来,引入了PICO方法;为了准确地表征科学文献综述问题的组成元素并识别关键词,有必要将组件分成PIOC。这意味着审查问题的各个方面必须分为人口,干预,结果和比较,因为我们的文献针对工程分支。通常,发现了5723项研究;这些方法遵循Prisma方法,使用PIOC中的预定义关键字来搜索学术数据库并应用包含/排除标准来过滤相关研究。对25个文件进行了深入分析,解决了有关插槽的好处,方法和限制的4个研究问题。结果表明,实施良好时,插槽的准备时间会减少15-30%,从而在易于访问的位置分配高移动产品。此外,它改善了仓库或配送中心(DC)中空间的使用,库存的准确性以及对不断变化的市场需求的响应速度。总而言之,证据将插槽定位为有效存储和分发物流操作的高影响力策略。考虑实施实际空间,预算和人员限制以及与新自动化技术的集成,需要进行更多的研究。纳入这些因素将在实践中增强该方法的理论上的好处。关键字 - 插槽,仓库管理,供应链,仓库,配送中心。
系统的利用结果表明,其有效性超出了最初的期望,并且采用该系统的公司将其评估为在现实环境中与定制者的有用,非面对面的联系点。具体来说,从货币洗钱的角度来看,银行面临着紧迫的问题,例如连续的客户管理* 2和管理外国居民的居住期限。与我们过去使用过的手段相比,邮件,电子邮件和简短的消息传递,我们发现客户对ATM通知的响应速度在70%至80%的范围内。此外,当发现注册信息的更改时,ATM出纳器是执行过程的一站式解决方案。在关闭银行出租人的几个小时内执行交易总数的70%,完成ATM交易所需的时间仅为三分钟,证明了这项服务的方便程度。使用该服务的客户实际上对此表示欢迎,例如“它很方便,因为它靠近我居住的地方,甚至在银行营业时间之外也可以在我的方便中使用它”,“操作非常简单”。同时,这项倡议刚刚开始。我们目前正在与许多银行和公司进行沟通,以引入该系统,以便在不久的将来使用尽可能多的人使用。我们还进行各种促销活动,以告知客户系统。我们将继续专注于扩展 +Connect服务,以促进一个迅速提供的世界,在该世界中,在凸入商店ATMS上,简单,稳定的程序成为事实的问题。
摘要:早产是一种通常与认知控制(CC)障碍有关的神经发育风险状况。最近的证据表明,CC可以通过联想学习隐式适应。在本研究中,我们研究了在早产(PT; n = 21;平均年龄8±1.3岁;胎龄30±18.5周)和满月(ft; n = 20; n = 20;平均年龄8±1.3岁)的儿童的能力,与自早期(pt; n = 21;平均年龄8±1.3岁)和全年前(ft; n = 20;平均年龄8±1.3岁)的儿童儿童的能力。所有儿童在进行动态时间预测(DTP)任务时均经历了HD-EEG记录,这是一个简单的S1 – S2检测任务,目的是设计旨在生成命令性刺激的局部 - 全球时间预测性。管理威斯康星州卡排序测试(WCST)以测量显式CC。PT组比FT组显示出更早和较慢(DTP)和持久性(WCST)的响应。此外,预处理表现出较差的自适应CC,如效率较小的全球响应速度调整所表明的那样。这种行为模式通过减少且对全局操纵预期的偶有性负变化(CNV)和不同皮质源募集的敏感性反映。这些发现表明,隐式cc可能是与早产相关的非典型认知发展的可靠内表型标记。
摘要:二维石墨烯薄膜和石墨烯衍生物在光电应用方面有巨大的潜力,引起了广泛的兴趣。然而,提高基于石墨烯薄膜和石墨烯衍生物的光电探测器性能仍然是一个巨大的挑战。通过用垂直取向石墨烯 (VOG) 替换石墨烯薄膜,然后用石墨烯量子点 (GQDs) 功能化,在锗 (Ge) 异质结 (指定为 GQDs/VOG/Ge) 上组装一个功能性 VOG,用于近红外光探测。GQDs 和 VOG 在光吸收和电子传输方面的协同效应增强了光电探测器的性能。对 VOG 进行功能修饰是调控 VOG 费米能级、增加肖特基结的内建电势以及促进光生电子和空穴对分离的有效方法。制成的光电探测器在波长 1550 nm 处表现出优异的响应度 (1.06 × 10 6 AW − 1 ) 和探测度 (2.11 × 10 14 cm Hz 1/2 W − 1 )。对光响应的研究表明,响应速度具有微秒的上升/下降时间,并且具有优异的可重复性和长期稳定性。结果揭示了一种制造高性能石墨烯基光电探测器新结构的简单策略。关键词:GQD、垂直取向石墨烯、锗、协同效应、内置电位、光电探测器■简介
除静态纳米结构外,DNA纳米技术还能构建动态和自主开关。[18] 这些动态开关的操作可分为两大类:第一,通过分子相互作用操作;第二,通过外部刺激操作。用于控制纳米尺度运动的主要分子相互作用是DNA杂交(主要是立足点介导的链置换)和碱基堆积。由分子相互作用控制的此类运动的例子包括可重构等离子体装置、[19] 铰链、[20,21] 镊子、[18,22] 旋转装置、[23–26] 助行器、[27] 药物载体 [28,29] 和对分子或纳米颗粒进行分选的机器人。[30,31] 作为驱动机制的其他分子相互作用包括靶分子结合 [32,33] 和适体 [28,29] 以及核小体相互作用。 [34] 通过任何分子相互作用进行的操作(包括上述所有机制)具有可控分子识别和特异性的优点。 然而,操作速度受到分子扩散和相互作用动力学的限制,因此通常非常慢。 值得注意的是,已经开发出多种方法来提高动态 DNA 装置的响应速度。 另一方面,外部刺激如光、[35,36] 温度、[37] 离子、[11,23] pH、[38–40] 和电场 [21,41] 通常能够使操作速度提高很多个数量级。[41] 例如,Karna 等人利用相邻纳米结构域之间可逆的、pH 依赖性的 i-基序形成来促进卷曲 DNA 纳米弹簧的驱动,进而通过整合素偶联影响培养细胞的运动性。 [40] 然而,我们在此称之为外部刺激的任何一种,都存在着整体作用的局限性,而且缺乏分子识别所能提供的特异性。
复杂的听觉场景构成了一个挑战,对倾听的倾听,使听众的感知决策更加慢和不确定。我们如何从与聆听行为控制有关的皮质网络的动力学中解释这种行为?我们在这里遵循以下假设:在挑战聆听情况下的人类适应性感知得到了对n = 40名参与者(13名男性)样本中的听觉网络的模块化重新配置的支持,他们接受了休息状态和任务功能功能磁共振成像(fMRI)。对空间选择性听觉注意任务的个人滴定的平均准确性约为70%,但在听众的响应速度上产生了相当大的个体差异,并在其自身的知觉决策中报告了信心。全脑网络模块化通过重新设置听觉,cinguloopercular和背注意网络,从静止性到任务增加。特定的,在任务相对于静止状态的任务期间,听觉网络和Cinguloopercular网络之间的互连性减少。此外,背注意网络和CingulooperCular网络之间的互连性增加。这些互连动力学可以预测响应信心中的个体差异,其程度在判断不正确后更为明显。我们的发现在元认知评估中,在挑战性的聆听情况下,听觉和注意力控制网络之间的功能互动与注意力控制网络之间的行为相关性,并暗示了两种功能上可解散的皮质网络系统,这些系统塑造了个人在适应性听力行为中个人之间相当大的元认知差异。
摘要。大约 20% 的劳动人口报告在工作中感到疲劳。这项研究的目的是调查是否可以使用“黄金标准”心理运动警觉任务 (PVT) 的替代移动版本来为使用不同移动设备在应用安全关键环境中工作的员工提供疲劳的客观指标,例如火车司机、医院工作人员、紧急服务、执法人员等。26 名平均年龄为 20 岁的参与者完成了 25 分钟的反应时间研究,使用心理运动警觉任务 (m-PVT) 的替代移动版本,该版本在 Apple iPhone 6s Plus 或三星 Galaxy Tab 4 上实施。参与者参加了两个会议:连续两天举行的上午和下午会议。研究发现,iPhone 6s Plus 产生的平均速度响应 (1/RTs) 和平均反应时间 (RTs) 与文献中观察到的相当,而 Galaxy Tab 4 产生的 1/RTs 和 RTs 明显低于 iPhone 6s Plus。此外,研究还发现,iPhone 6s Plus 足够灵敏,可以在 m-PVT 上 10 分钟后检测到较低的平均响应速度 (1/RTs) 和明显较慢的平均反应时间 (RTs)。相比之下,研究还发现 Galaxy Tab 4 在 m-PVT 上 5 分钟后产生的平均失误次数显著增加。这些发现似乎表明,m-PVT 可用于为在应用安全关键环境中工作的员工(例如火车司机、医院工作人员、紧急服务、执法人员等)提供疲劳的客观指标。
北欧电力系统中可变可再生能源的日益普及导致频率质量下降,并增加了水电站提供一次频率控制的重要性。水电是世界上最大的可再生能源。它的可靠性、可控性和可调度性以及巨大的存储量使其成为北欧电力系统中提供频率调节的最重要来源。许多提供调节电力的水电站都配有卡普兰涡轮机,这些涡轮机具有复杂的机械系统。此外,提供频率调节的卡普兰涡轮机频繁而快速的机械运动导致涡轮机导叶和转轮叶片磨损的问题。卡普兰涡轮机适合稳定运行。为了缓解这个问题,本文研究了一种混合水电站与电池储能系统相结合的解决方案,其中电池可以处理快速的频率偏差,从而使涡轮机更稳定地运行。分析基于水电站提供的 FCR-N 服务,因为 FCR-N 被确定为需要水电站输出功率非常快速变化的服务之一。本论文主要采用建模与仿真、数据分析和现场测量作为研究方法。为进行分析,开发了水电站和混合水电站的仿真模型。使用瑞典典型水电站的数据验证了水电站的仿真模型。磨损的量化是研究的重点。从涡轮机的磨损、电站对频率偏差的响应速度以及涡轮机机械运动过程中的方向变化次数等方面比较了水电站和混合水电站的性能。最后得出结论,在水电站中增加电池将减少涡轮机的磨损,并提高北欧电力系统的频率质量。