高压和高电流学院,电气工程学院,工程学院,Universiti Universiti 5 Teknologi Malaysia,Johor Bahru,81310,马来西亚。6 B伊斯兰伊斯兰阿扎德大学电气工程系,伊朗哈尔克哈尔,伊斯兰分公司。7 C马来西亚 - 日本国际技术学院,马来西亚Teknologi Universitia,Jalan Sultan Yahya Petra,8 54100,吉隆坡,马来西亚。9 10通讯作者:namirreza@utm.m.my 11 12摘要 - 微电网系统(例如13个光伏,风涡轮激素燃料电池和能源存储系统(PV/WT/FC/ESS))的消费负载和发电功率的变化对这些系统的复杂性和非线性性质的增加而构成了挑战-14频率控制。本文采用基于模糊逻辑的15个自我调整控制器来克服经典控制器的参数不确定性,例如16个操作条件,微电网操作点的变化以及微电网建模的不确定性。17进一步,使用了模糊的逻辑和分数控制器,用于对离网18微电网的负载频率控制,并具有可再生资源的影响,因为后者控制器使强大的性能受益,并且19具有灵活的结构。为了实现所提出的控制器的更好操作,一种新型的荟萃分析鲸20算法已用于最佳确定模糊控制器的输入和输出量表系数和分数订单控制器的21个分数顺序。建议的方法应用于带有柴油机22发电机,风力涡轮机,光伏系统和能量存储设备的微电网上。26在提议的控制器的23个结果与经典PID控制器的结果之间进行了比较,证明了优化的24个分数分数自调和模糊控制器的优越性,其操作特性,响应速度和频率偏差的25降低频率偏差相对于负载变化。
摘要:本文提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统类型,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换类型,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强的优点。因此本文将FLC引入高型控制系统,利用FLC的输出作为积分器的增益来控制通断,达到动态切换型的目的,并在实验中成功验证。IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。此外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型降阶算法,称为加权梯形Nie-Tan(WTNT)。与传统降阶算法相比,WTNT具有更快的计算速度和更好的稳态精度,并已成功应用于实时控制系统,具有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC和IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度和更强的处理不确定性的能力。
液晶弹性体 (LCE) 是一类由松散交联的聚合物网络组成的形状记忆聚合物,在从向列相到各向同性相的转变过程中表现出可逆的形状变化。[1] 由于它们具有类似肌肉的工作密度和收缩应变 [10–14],并且能够打印或图案化为各种几何形状,它们已越来越广泛地用作软体机器人、[2–4] 可穿戴计算和触觉 [5,6] 和形状变形物质 [7–9] 中的执行器。[15,16] 在大多数机器人和工程应用中,基于 LCE 的执行器使用外部热源进行热刺激,或通过焦耳加热使用集成线或嵌入式渗透粒子网络进行电刺激。先前的研究主要集中在通过焦耳加热来加热 LCE,[6,12,13,17,18] 其中许多应用使用液态金属[19–21] 和波浪电子[12,13,22,23] 作为加热元件。然而,这些方法的一个关键限制是它们依赖于开环加热和被动冷却。这导致温度变化缓慢,并且对控制 LCE 执行器响应速度和曲线的能力有限。具体而言,由于 LCE 的热导率低至 0.3 W m − 1 K − 1[20],导致驱动速度可能很慢;由于热传递是通过对流而不是传导进行的,冷却速度受到极大限制。后者导致冷却时间可能需要激活时间的 5 倍[12,24] 10 倍[13] 甚至 50 倍[25] 才能使 LCE 在环境条件下冷却并恢复到其原始状态。此外,由于温度升高幅度更大,更快的驱动速度需要更长的冷却时间。[25] 为了减少加热时间,人们嵌入了液态金属液滴等软填料来提高这些结构的热导率。[6] 冷却时间的问题仍然存在,加热和冷却时间的差异取决于传导(加热)和对流(冷却)之间传热速率的差异;需要更智能的方法来解决这个问题。最近有人努力通过新的刺激方法来提高 LCE 执行器的速度和控制,[26] 尽管其中大多数方法都会引入显着的机械
所有介电材料都具有电活性,即能够在施加的电场作用下改变其尺寸或形状。(Dang et al, 2012) 电活性聚合物 (EAP) 及其聚合物纳米复合材料由于其低模量、高应变能力、易于低成本加工和可定制的机电耦合特性,特别适用于从致动器、传感器到发电机等应用。通常,EAP 诱导的应变能力比刚性和易碎的电活性陶瓷高两个数量级。与形状记忆合金和聚合物相比,它们显示出更快的响应速度。(Yuan et al, 2019) 由于这些特性,EAP 可以与生物肌肉相媲美,并长期被称为“人造肌肉”。(Bar-Cohen, 2002) 社区甚至发布了一项挑战,要求开发一种由人造肌肉驱动的机械臂,以赢得与人类对手的腕力比赛。除了致动器之外,EAP 还显示出其在传感应用中的潜力,例如触觉传感、血压和脉搏率监测以及化学传感。(Wang 等人,2016 年)此外,EAP 甚至可以作为发电机中的关键活性材料。随着便携式电子设备(例如无线传感器和发射器)和无线微系统的功能不断增加,其能量需求也急剧增加。而电池的使用由于环境问题和有限的使用寿命而很麻烦,因此需要定期更换。解决这一挑战的明显解决方案是开发完全依赖从人体或周围环境中获取的能量的自供电系统。EAP 已被证明能够获取振动机械能(Lallart 等人,2012 年)和海浪能(Jean 等人,2012 年)。EAP 可以根据其所属的晶体类别(即中心对称或非中心对称)分为不同的亚组。当具有对称中心的介电材料受到电场刺激时,对称性将抵消阳离子和阴离子的运动,不会导致晶体的净变形。然而,化学键不是谐波的,键的非谐性会引起二阶效应,导致晶格的净变形很小。(Vijaya,2013)发现变形与电场的平方成正比,与电场的方向无关。这种效应称为电致伸缩。由于这种非谐波效应存在于所有介电体中,因此所有介电体都是电致伸缩材料。
自适应机器学习模型正在彻底改变动态环境中的实时财务欺诈预防,从而提供无与伦比的准确性和对不断发展的欺诈模式的响应能力。金融机构面临越来越复杂的欺诈计划的不断威胁,这些计划随着时间的流逝而改变和变化。传统的静态模型通常在解决这些快速变化的威胁方面缺乏,因此需要采用自适应机器学习技术。自适应机学习模型旨在通过从新数据中学习并适应新兴欺诈模式来连续发展。这些模型采用了先进的算法,例如增强学习,在线学习和深度学习,以保持其在检测和预防欺诈方面的有效性。强化学习算法通过从其行动中收到反馈,不断改善其决策过程来优化检测策略。在线学习算法随着新事务数据的可用而逐渐更新模型,以确保模型保持最新和响应速度。自适应机器学习模型的关键优势之一是他们实时处理大量数据的能力。通过利用神经网络和集合学习等技术,这些模型可以分析复杂的数据集,识别微妙的异常并以高精度检测欺诈活动。实时数据处理功能可以立即检测和对可疑交易的响应,从而大大降低了财务损失的风险。自适应模型还结合了异常检测技术,以识别与正常交易行为的偏差。通过不断从最新数据中学习,这些模型可以识别以前看不见的欺诈模式,从而为新颖威胁提供了强有力的防御。此外,可解释的AI(XAI)技术的集成确保了这些模型的决策过程是透明且可解释的,从而促进了信任并遵守监管要求。实施预防实时欺诈的自适应机器学习模型涉及解决诸如数据质量,计算效率和模型解释性之类的挑战。金融机构必须确保获得高质量数据并投资于强大的计算基础架构以支持实时处理。此外,采用可解释的AI技术增强了模型透明度和调节依从性。总而言之,自适应机器学习模型为预防实时财务欺诈提供了动态有效的解决方案。通过不断学习并适应新数据,这些模型为不断发展的欺诈计划提供了弹性的防御,从而增强了财务交易的安全性和完整性。这种适应性方法不仅减轻了财务风险,而且可以增强金融系统的整体可信赖性。
模拟示波器在实验室分析应用中几乎被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单易用和实时显示,它仍然是工程师和技术人员进行故障排除的首选。将此视为一项挑战,惠普科罗拉多斯普林斯分部的工程师着手设计一款数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上会更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面具有可比性。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,实际上在某些任务上表现更好。使它们优于模拟示波器(数字化示波器可与之媲美)的原因是只有数字化示波器才能提供的存储和测量功能阵列。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并以衰减的方式无限期地显示波形。从第 6 页的介绍性文章开始,到与模拟示波器进行故障排除的正面比较(第 57 页)结束,本期共有 9 篇文章涉及 HP 54600 系列示波器的设计。它们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、经济高效的机械封装以及对制造过程的精心关注(包括测试专用和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面来解决易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过采用新架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到改善。您可以在文章的第 11 页找到有关架构和定制 IC 的详细信息,在第 36 页找到有关机械设计的详细信息,在第 21 页找到有关测试策略和测试系统的详细信息。验证而非特性分析的测试策略大大减少了需要测量的参数数量,而新的基于 FFT 的测量算法(第 29 页)进一步改进了仅使用数字万用表的生产测试系统。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准(对于故障排除仪器而言非常重要)的步骤。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久性能力的新方法。它被称为自动存储,以全强度显示最新效果,以半强度显示较早的轨迹,以便用户可以更轻松地看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据外,它还用于校准垂直增益。
模拟示波器在实验室分析应用中几乎已被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单、显示实时,它仍然是工程师和技术人员进行故障排除的首选。惠普科罗拉多斯普林斯分部的工程师们将此视为一项挑战,着手设计一种数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面相当。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上在某些任务上表现更好。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示带有衰减的波形。从第 6 页的介绍性文章开始,到与模拟示波器的正面比较(用于故障排除)(第 57 页),本期共 9 篇文章讨论了 HP 54600 系列示波器的设计。他们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、具有成本效益的机械封装以及对制造过程的精心关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您将在第 11 页的文章、第 36 页的机械设计以及第 21 页的测试策略和测试系统中找到架构和定制 IC 的详细信息。验证而不是特性的大量测试策略大大减少了需要测量的参数数量,和新的基于 FFT 的测量算法(第 29 页)进一步改进了生产测试系统部分为内置式,只使用两个信号源和一个外部数字万用表。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准的步骤——这对于故障排除仪器很重要。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久能力的新方法。它称为自动存储,以全强度显示最新效果,以半强度显示早期轨迹,以便用户更容易看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据之外,它还用于校准垂直增益。
模拟示波器在实验室分析应用中几乎被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单易用和实时显示,它仍然是工程师和技术人员进行故障排除的首选。将此视为一项挑战,惠普科罗拉多斯普林斯分部的工程师着手设计一款数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上会更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面具有可比性。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上更适合某些任务。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示波形并逐渐消失。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。从第 6 页的介绍性文章开始,到与模拟示波器进行故障排除的正面比较(第 57 页)结束,本期共有 9 篇文章涉及 HP 54600 系列示波器的设计。它们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、经济高效的机械封装以及对制造过程的密切关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您可以在文章的第 11 页找到有关架构和定制 IC 的详细信息,在第 36 页找到有关机械设计的详细信息,在第 21 页找到有关测试策略和测试系统的详细信息。验证而非特性分析的测试策略大大减少了需要测量的参数数量,而新的基于 FFT 的测量算法(第 29 页)进一步改进了仅数字万用表。生产测试系统部分内置,仅使用两个信号源和一个外部信号源。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准(对于故障排除仪器而言很重要)的步骤。除了将波形样本转换为数字数据外,它还用于校准垂直增益。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久性能力的新方法。称为自动存储,它以全强度显示最新效果,以半强度显示较早的轨迹,以便用户可以更轻松地看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模拟数字转换器是 16 通道、16 位、间接类型(第 48 页)。
班加罗尔,2024 年 12 月 4 日 Mphasis(BSE:526299;NSE:MPHASIS)是一家专门从事云和认知服务的信息技术 (IT) 解决方案提供商,今天宣布在印度班加罗尔开设新的网络融合中心。这一尖端设施旨在为各行各业的全球客户提供 24x7 高级威胁检测、事件响应和持续威胁监控,帮助组织应对日益复杂的网络安全形势。班加罗尔中心是 Mphasis 网络融合中心的战略补充,该中心专注于利用人工智能 (AI)、机器学习 (ML) 和自动化来实时检测、分析和缓解不断演变的网络威胁。通过实施先进的威胁管理实践,包括漏洞和攻击模拟、威胁搜寻和取证分析,网络融合中心将增强组织以无与伦比的精度和速度识别和应对安全事件的能力。 Mphasis 的网络融合中心旨在将网络威胁响应效率提高 60% 以上,并将对供应链漏洞的响应速度提高 50% 以上。通过这个最先进的设施,Mphasis 专注于通过漏洞模拟、泄露凭证保护、攻击面监控、供应链风险监控以及网络钓鱼检测和补救等高级功能将攻击面减少 45%。这种全面的方法使组织能够主动防御不断演变的威胁,同时优化其运营弹性。随着人工智能在网络安全领域的快速应用,Mphasis 有望推动威胁管理的变革性成果。新的网络融合中心提供 IT 和运营技术 (OT) 平台上威胁形势的 100% 可见性,解决常见挑战,例如可变威胁、内部风险暴露以及安全事件日益复杂化。“在 Mphasis,我们致力于提供创新的网络安全解决方案,以保护企业并改变他们管理和缓解网络风险的方式。 Mphasis 首席执行官兼董事总经理 Nitin Rakesh 表示:“班加罗尔网络融合中心的启动标志着我们迈出了关键一步,让我们能够借助人工智能驱动的威胁检测和响应,帮助客户领先于复杂威胁。借助这一新设施,我们将巩固我们作为值得信赖的合作伙伴的地位,帮助企业加强网络安全态势并提高运营弹性。班加罗尔网络融合中心的启动标志着 Mphasis 致力于推进网络安全创新的一个重要里程碑,我们利用尖端技术帮助客户保持对新兴威胁的抵御能力。凭借人工智能驱动的行为威胁检测和情境智能,我们的中心提供实时洞察和可定制的仪表板,“让我们的客户能够精准而自信地保护他们的关键资产,”Mphasis 首席解决方案官 Srikumar Ramanathan 说道。Mphasis 致力于通过其应用研发部门 NEXT Labs 内的量子计划来增强网络安全。该计划通过专注于应用研究和开发行业特定解决方案(尤其是在网络安全领域),促进客户向量子时代的过渡。Mphasis 通过提高认识的研讨会、评估和咨询服务,使组织能够利用量子技术来增强安全措施。
模拟示波器在实验室分析应用中几乎已被数字或数字化示波器所取代,但它却拒绝消亡。由于其成本低、控制简单、显示实时,它仍然是工程师和技术人员进行故障排除的首选。惠普科罗拉多斯普林斯分部的工程师们将此视为一项挑战,着手设计一种数字化示波器,故障排除人员不仅会发现它与模拟示波器相当,而且实际上更喜欢它。HP 54600 系列数字化示波器具有通常与最常用于故障排除的全功能 100 MHz 模拟示波器相关的所有功能。它们具有相同的带宽 - 它们是 MHz - 并且在成本和易用性方面相当。虽然它们显然是连续示波器(显示的波形由点而不是连续的线组成),但 HP 调整系列示波器在大多数情况下对电路调整的响应速度与模拟示波器一样快,而且实际上在某些任务上表现更好。与模拟示波器相比,数字化示波器更受欢迎的原因在于只有数字化示波器才能提供的存储和测量功能。由于波形数据是在内存中采样和存储的,因此可以在触发事件之前和之后查看数据,以数学方式处理数据,并无限期地显示带有衰减的波形。从第 6 页的介绍性文章开始,到与模拟示波器的正面比较(用于故障排除)(第 57 页),本期共 9 篇文章讨论了 HP 54600 系列示波器的设计。他们描述了如何通过高水平的电路集成、使用表面贴装技术装载印刷电路板、具有成本效益的机械封装以及对制造过程的精心关注(包括专用测试和测试设备的成本)来解决成本问题。通过为主要控制功能提供专用旋钮而不是菜单驱动的软键用户界面,部分解决了易用性问题,尽管保留了菜单和软键来控制数字化示波器功能。通过新的架构和两个专用集成电路,显示速率能力提高到每秒一百万点,是其他数字化示波器的五十到一百倍。通过将每条轨迹显示的点数增加四倍,波形平滑度得到了改善。您将在第 11 页的文章、第 36 页的机械设计以及第 21 页的测试策略和测试系统中找到架构和定制 IC 的详细信息。验证而不是特性的大量测试策略大大减少了需要测量的参数数量,和新的基于 FFT 的测量算法(第 29 页)进一步改进了生产测试系统部分为内置式,只使用两个信号源和一个外部数字万用表。在第 41 页,您可以阅读有关确保 HP 54600 系列示波器符合电磁兼容性国际和军用标准的步骤——这对于故障排除仪器很重要。第 45 页的文章介绍了一种使用数字化示波器的存储和无限持久能力的新方法。它称为自动存储,以全强度显示最新效果,以半强度显示早期轨迹,以便用户更容易看到调整的效果。HP 54600 系列和其他 HP 数字化示波器中使用的模数转换器是 16 通道、16 位、间接类型(第 48 页)。除了将波形样本转换为数字数据之外,它还用于校准垂直增益。