20 世纪 30 年代末,已有数架飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或轮毂制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,当自动驾驶仪启动时,就可以由自动驾驶仪施加飞行控制面位置设定点(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员对主要飞行控制装置产生的力变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平的需求迅速变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
项目探讨了混合电气推进对减少CO 2的商业航空排放的潜力。突袭评估杂交对涵盖区域和SMR任务的混合飞机的四种不同配置的益处,并代表飞机设计中不同级别的干扰。此评估是与对电动组件的调查和混合动力火车的结构密切相关的。配置研究提供了组件设计和性能估计的规格,作为回报,这些规范是通过飞机的性能评估来合成的。最终目标是两个识别杂交的技术差距和关键推动因素,以详细阐述有前途应用的开发路线图。
基于模型的工程 一种产品开发、制造和生命周期支持方法,使用数字模型和仿真来提高首次质量和可靠性。基于模型的系统工程 由数字模型原理驱动,对系统整个生命周期的物理和操作行为进行系统级建模和仿真的学科。基于模型的定义 使用 3D 模型进行零件定义。它还可能包括 3D 模型内的特征和零件属性的定义。符合行业标准表格 ASME Y14.41 和波音表格 BDS-600。基于模型的说明包括装配工作所需的图形信息和 MBD 技术信息(工艺规范、几何公差等)。架构:系统的基本概念或基于设计思想和演化原则对系统特性的要素及其关系在其环境中的具体体现。
1. 引言.................... ... .5 1.1.1. 商用飞机.................... ... . ... ... ................................................................................................................................................. 7 1.2.1. 商用飞机.................................................................................................................................................... ................................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................. ................................................................................................................................................................. 8 1.2.3. 军用飞机.................................................................................................................................................... 8 1.3. 起落架总体布置................................................................................................................................................... 8 1.3. 起落架总体布置.................................................................................................................................................... 8 . .... ...
2 纽约大学柯朗数学科学研究所,纽约,纽约州 b 电子邮件:ns4361@nyu.edu;网站:https://www.linkedin.com/in/sawantnihar/ 3 MPR,华盛顿特区 摘要:冠状病毒病(COVID-19)演变为大流行病,严重阻碍了公共交通系统的使用。在后 COVID-19 时代,我们可能会看到在城市内、城际和州际旅行中,人们将更多地依赖具有固有物理距离的自动驾驶汽车和个人快速交通 (PRT) 系统,而不是公共汽车、火车和飞机。然而,航空旅行仍将是人类洲际交通的主要方式。在本研究中,我们对典型的洲际飞机通风系统进行了全面的计算分析,以确定环境因素最有利于人类舒适度的座位,包括空气质量、防止口腔或鼻腔释放的污染物(如二氧化碳和冠状病毒)以及热舒适度。波音和空客飞机都考虑了同行旅客鼻子/嘴巴排出的空气速度、温度和空气污染物浓度。在每架飞机上,都分析了头等舱、商务舱和经济舱部分。我们得出了关于每架飞机每个部分哪个座位最合适的结论,并提供了环境条件数据来支持我们的推论。公众可以使用这些发现来决定他们应该坐哪个座位
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki、Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。
确保电传操纵系统安全性的方法:空客 VS 波音 Andrew J. Kornecki,Kimberley Hall 安柏瑞德航空大学 美国佛罗里达州代托纳比奇 < kornecka@erau.edu > 摘要 电传操纵 (FBW) 是一种飞行控制系统,使用计算机和相对较轻的电线来取代飞行员驾驶舱控制装置和移动表面之间的传统直接机械连接。FBW 系统已用于制导导弹,随后用于军用飞机。商用飞机实施延迟是由于需要时间开发适当的故障生存技术,以提供足够的安全性、可靠性和可用性。软件生成对高完整性数字 FBW 系统的总工程开发成本贡献很大。讨论了与软件和冗余技术相关的问题。空中客车和波音等领先的商用飞机制造商在其民用客机中采用了 FBW 控制。本文介绍了他们的方法、控制理念的差异以及实现航空公司运营所必需的同等安全保障水平的实施情况。关键词 航空电子、软件工程、软件安全、容错 1.简介 电传操纵 (FBW) 系统是一种基于计算机的飞行控制系统,它用更轻的电线取代了飞行员驾驶舱控制装置和移动表面之间的机械连接。飞行员通过控制飞机机翼和尾翼上的可移动部件(称为飞行控制面)来操纵飞机。计算机将飞行员的命令转换为传送到控制面的电脉冲。空中客车和波音在其商用飞机中利用 FBW 的方式略有不同。本文的目的是比较商用飞机制造商在实施 FBW 系统时使用的不同方法。本文试图从系统和软件工程设计决策的角度来探讨系统的可用性和安全性。