一般排除和限制 以下是本健康计划不承保的一些服务和用品的列表。完整的排除列表可在 premera.com/sebb 上找到。 以下任何治疗、手术、服务、药物或用品均不提供福利: • 非医学必需的服务 • 整容手术或重建手术(特殊规定的除外) • 实验性或研究性服务 • 辅助生殖 • 减肥药物、食品和锻炼计划 • 超过特定福利最高限额的服务 • 由其他类型保险支付的服务,例如财产保险、责任保险或机动车保险 • 您未受本计划承保时获得的服务 • 提供者的执照或认证不允许其提供的服务。它也不承保没有国家要求的执照或认证的提供者。 • 性功能障碍 • 绝育逆转 某些服务、设备和药物需要事先获得 Premera 的授权才能获得承保。要了解在您接受保险之前需要获得您的计划预先批准的服务和程序的列表,请访问 premera.com/sebb 。
摘要:由于人为活性,海洋的汞含量(HG)含量增加了两倍,尽管黑海洋(> 200 m)已成为重要的HG储层,但有毒和生物蓄积的甲基汞(MEHG)的浓度很低,因此很难测量。因此,当前对深海中HG周期的理解受到严格的数据限制,控制MEHG的因素及其转换率仍然很大程度上未知。通过分析52个全球分布的巴基拉质深元素宏基因组和26个来自Malaspina Expedition的新元转录组,我们的研究揭示了在全球浴类海洋中(〜4000 m深度)中细菌编码基因Mera和Merb的广泛分布和表达。这些基因与Hg II还原和MEHG脱甲基化相关的基因在粒子附着的分数中尤为普遍。此外,我们的结果表明,水质量年龄和有机物组成塑造了拥有Mera和Merb基因的结构,这些群落和Merb基因生活在不同的粒径分数,其丰度及其表达水平。命令的成员Corynebacteriales,Rhodobacterales,Alteromonadales,Oceanospirillales,Moraxelleles和Flavobacteriales是深海中包含Mera和Merb基因的主要分类参与者。这些发现,加上我们先前具有具有代谢能力降解MEHG的深层层流海洋的纯培养物分离株的结果,表明甲基汞脱甲基化和HG II还原可能发生在全球黑暗海洋中,这是生物圈中最大的生物组。关键字:汞,甲基汞,浴样,细菌脱甲基化,宏基因组,metatranscriptomes,mer基因■简介
大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。
In collaboration with He, Rong-Qiang (贺荣强) a gifted expert Zheng, Ru (郑茹) , Wang, Jia-Ming (王佳明), Chen, Yin (陈寅) , Tian, Yi-Heng ( 田一衡) at Renmin University of China; Huang, Li ( 黄理) a gifted expert at Science and Technology on Surface Physics and Chemistry Laboratory
耦合参数谐振器(参数器)网络有望成为并行计算架构。在实现复杂网络的过程中,我们报告了两个耦合参数器的实验和理论分析。与以前的研究不同,我们探讨了参数器之间强双线性耦合的情况,以及失谐的作用。我们表明,即使需要仔细校准以确保有正确的解空间,系统仍可在此状态下作为 Ising 机运行。除了形成分裂正常模式外,还会产生新的混合对称状态。此外,我们预测具有 N > 2 个参数器的系统将经历多个相变,然后才能达到与 Ising 问题等同的状态。
猜想(量子强宇宙审查)设 S 为(不一定是全局双曲)时空 ( M , g ab ) 的严格偏柯西曲面,设 D ( S ) 为其依赖域。( D ( S ) , ^ g ab )本身可以看作是一个全局双曲时空,其中 ^ g ab = ψ − 1 ∗ g ab ,ψ : D ( S ) → ψ ( D ( S )) ⊂ M 是等距嵌入。设 A 是定义在 ( M , g ab ) 上的 F 局部量子场论,设 B 是同构于 A ( M ; D ( S )) 的 ( D ( S ) , ^ g ab ) 上的量子场论。设 ω : B → C 是一般的纯 Hadamard 态。那么,一般来说,不存在将 ω 扩展至 Hadamard 状态 ω : A ( M ; D ( S )) → C 的情况。
在我们与本地和全球利益相关者的接触中,我们解释说,“全球 50 强”就像是一份未来的蓝图:通过不确定性,我们可以制定计划来探索我们的优势和劣势以及在未来 50 年可能出现的任何极端情况下可能遇到的机遇和威胁。通过假设,我们可以监控我们认为理所当然或假定为真实的关键事物,这一点很重要,因为否则未来机遇的整个基础可能会发生变化。我们还使用在十年左右有效的十大趋势来确定未来机遇的领域,所有这些都是为了积极影响未来的增长、繁荣和福祉,从而转化为未来的机遇。
摘要:玻璃纤维增强复合材料 (FGRC) 具有优异的机械性能、低成本和耐腐蚀性,可用于替代汽车部件制造中的大部分金属。FGRC 在受到恒幅载荷 (CAL) 时会发生疲劳失效。然而,对 FGRC 行为的研究仍然缺乏预测工程和分析工具,主要是因为对这些材料行为的了解不足,包括它在受到变幅载荷 (VAL) 时的完整性。因此,本研究旨在研究欠载对不同层压板取向的 FGRC 疲劳寿命行为的影响。增强材料使用具有 [0/90]° 和 [±45]° 取向的单向玻璃纤维,并选择短切原丝毡来研究周期性欠载的影响。同时使用聚酯树脂作为基质材料。FGRC 复合材料采用手工铺层技术制造,根据 ASTM D3039 进行拉伸试验,根据 ASTM D3479 进行疲劳试验。结果表明,与 CAL 结果相比,欠载效应使 FGRC 的疲劳寿命行为从实际值下降 1.4% 到 18%。
”战略更新的目的应该是制定一个有远见的具体计划,该计划通过实现CERN的下一个旗舰项目。该计划应吸引并重视国际合作,并应使欧洲能够继续在该领域发挥领导作用。”
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。