涡流管,也称为Ranque Vortex Tube,Hilsch Vortex管和Ranque E Hilsch Vortex管,是一种设备,可以通过Intlet Ougzzles向涡流室分隔地进入涡流室,使其可将热和冷空气分开。涡流管是由冶金学家和物理学家Ranque于1933年发现的,而德国物理学家Rudolf Hilsch则改进了设计。一个兰斯式涡流管由一个或多个入口喷嘴,一个涡流室,冷端孔,热端控制阀和管组成。设计的涡流室的特殊内部配置结合了压力和加速空气的效果,达到了高旋转速率(超过百万rpm)(Pinar等,2009)。涡流管根据其流量特征分为两组:反流(图1)和平行流(图2)RHVT。在这项研究中,已经使用了反流RHVT。反流的工作原理Ranque E Hilsch
™ 工艺使这些先进的陶瓷材料无需软金属粘合剂即可组合,而使用传统烧结技术的碳化钨/钴则需要软金属粘合剂。ROC 工艺使喷嘴能够使用非常短的固结周期形成,从而最大限度地减少陶瓷颗粒在长时间暴露于高温时自然增大的趋势。消除金属粘合剂并保持超细晶粒尺寸均有助于实现最佳喷嘴性能。最终得到的是一种极其耐用的材料,能够强烈抵抗磨料和腐蚀磨损。
本文由内布拉斯加大学林肯分校 DigitalCommons 农学与园艺系免费提供给您,供您开放访问。它已被内布拉斯加大学林肯分校 DigitalCommons 授权管理员接受,可纳入农学与园艺学论文、学位论文和学生研究。
3D 打印是一种增材制造技术,通过逐层软化热塑性长丝来快速创建 3D 模型。在使用 3D 打印技术制作物体时,有几个参数会影响打印物体的强度,包括打印速度和喷嘴温度。本研究旨在调查打印速度和喷嘴温度对使用 ABS 长丝打印产品的拉伸强度、几何形状和表面粗糙度的影响。打印速度分别为 30、40 和 50 mm/s,喷嘴温度分别为 235、245 和 255 o C。根据 ASTM D-638-02a 对打印样品进行拉伸试验。对尺寸为 30x30x40 mm 的打印样品进行表面粗糙度和几何形状测试。在垂直侧进行表面粗糙度和几何形状测试以检查层数和高度变化。结果表明,根据研究,最佳打印速度和喷嘴温度为 30 mm/s 和 255 o C,此时拉伸强度高达 33.52 MPa。
Aerowing 团队由与您一样辛勤工作的飞机工程师和维护人员组成。之前我们曾有过这样的经历,我们的动力就是改进飞机生产和维护的技术。输入:Aerowing 快速脱封系统。
在大约30年的时间里,固体火箭电动机(SRM)的喷嘴将人造丝的航空航天级用作碳织物加固的前体,用于用作烧蚀性绝缘体的酚类复合材料。人造丝一直是行业的中流型,现代喷嘴设计一直取决于Car-bon,织物/酚类或石墨织物/酚类组合的特性。多年来,工业一直取决于唯一的源供应商。现有的供应商北美人造丝公司是该国最后尚存的人造丝制造商。像许多航空航天供应商一样,它受到国防采购中的削减的影响,并计划删除航空航天级人造丝的生产。目前,生产正在继续进行生命类型购买的订单。这些命令将在1996年底之前完成,届时,持续灯丝rayon的国内来源将消失。
爆炸的粉末定向能量沉积经过精心设计,用于精细分辨率添加剂制造处理。同轴粉末沉积头使用由外喷嘴指向的屏蔽气体的外层,以防止在粉末熔化过程中发生氧化。粉末爆炸的原料集水效率可能低至50-80%,而电线沉积系统的效率更接近98%。本研究评估了定向能量沉积喷嘴条件对集水效率的影响。通过粉末流的收敛性,已经发现总体外部屏蔽气喷嘴长度的变化可将材料使用效率提高10%。该实验的结果表明,对于同轴粉末沉积头设计,如果可以安全地降低僵持距离,则随着外部屏蔽气喷嘴的长度增加或隔离距离降低,可以提高粉末流域效率。
摘要。在此贡献中,引入了基于机器学习的平面喷嘴形状优化的方法。与标准深神经网络相比,提出的神经网络是使用高阶神经单元构建的。多项式结构以及各种激活函数被用作控制流动的强烈非线性Navier-Stokes方程的近似值。众所周知的NASA喷嘴的形状被选择为初始几何形状,该几何形状近似于第5阶曲线。di ff en ff几何形状。因此,该任务由具有定义成本函数作为目标的多变量优化组成,这些目标是通过在完全结构化的网格上执行的组合流体动力学(CFD)计算的。获得此优化的目标是获得几何形状,该几何形状符合喷嘴出口的所需条件,例如流场均匀性,指定的流动状态等。最后,比较了DI FF近似值的性能,并通过CFD计算验证了优化的最佳候选者。