我们将对推力偏转喷嘴进行研究,该喷嘴将在未来战斗机发动机中发挥作用,这些发动机需要高机动性,并且可能需要减小转向面积以确保隐身性能,所获得的结果将用于这将体现在战斗机的发展中,并将应用于未来无人机的发展。
CSIR-NAL,国家三音速空气动力学设施 (NTAF) 部门,1.2m*1.2m 三音速风洞用于亚音速、跨音速和超音速马赫数测试(0.2-4.0)。柔性喷嘴 (FN) 是三音速风洞的重要组成部分。喷嘴由一对柔性钢板制成,设置为沿流道顶部和底部形成适当的轮廓。它由位于 17 个站点的液压执行器操作和控制。这些钢板上的过应力是由于曲率设置错误(过度弯曲)或液压千斤顶故障(例如执行缸卡住)或曲率传感器问题造成的。曲率传感器组件安装在柔性喷嘴边缘的不同位置,以识别过应力。由于风洞测试持续时间限制(约 30-40 秒)和串联传感器,通过选择开关扫描来识别特定站点的应力发生情况非常具有挑战性。为了解决这个问题,在 1.2 米 Trisonic 风洞中实施了柔性喷嘴的实时健康监测系统。在这里,限位开关输出并联连接到基于 NI 的硬件。如果板上出现应力,它将被记录并显示在实时软件中。关键词:- 柔性喷嘴、马赫数、风洞、Trisonic、亚音速、跨音速、超音速
本文提出了使用硝酸铵(HAN)推进剂进行航天施用的燃烧室的初步研究。燃烧室由两个部分组成,即推力室和收敛性(C-D)喷嘴。燃烧室的设计非常重要,因为在此封闭体积中释放的推进剂中的化学能,即推力室并通过C-D喷嘴部分扩展。因此,必须设计腔室,以提供推进剂反应和释放最大可用能量的必要空间,并且还应防止以热的形式损失能量。应最佳设计C-D喷嘴,以允许将焓的最大转化为动能。因此,推力室和C-D喷嘴以最佳尺寸设计,用于释放热量,以将HAN推进剂的燃烧转换为基于HAN的单核粉推进器的排气速度。在这项工作中,燃烧室,即推力室和C-D喷嘴在16 bar的压力下设计,以产生11 N的推力。进行了11 N分析以显示以11 N推力的燃烧室的压力和温度变化,用于航天器的16 bar的16 bar压力和腔室压力。从分析结果中发现,han+甲醇+硝酸铵+水的推进剂组合的单opellogent发动机适合于态度和轨道控制系统(AOCS)推进器的设计。
对于军用飞机而言,燃气涡轮发动机制造商和最终用户面临的一个关键问题就是耐久性。尤其是加力燃烧段的条件非常恶劣,发动机喷嘴的设计寿命通常只有涡轮发动机其他硬件的一半。目前的喷嘴基于由密封件和襟翼制成的轴对称可变喷嘴。这些组件必须承受极端温度(通常超过 1000°C)以及与加力燃烧器点火相对应的快速热循环。此外,加力燃烧段通常具有燃烧功能不均匀的特点,这会在某些喷嘴瓣上产生热条纹。因此,这些部件会受到非均匀热流的影响,襟翼和密封件的重叠设计尤其明显,从而在整个宽度上产生高热应力。镍基合金通常用于发散襟翼和密封部件。严酷的热机械环境使镍基部件产生大量开裂,再加上高温 1 导致的蠕变变形。结果是部件拆卸增加,直接影响可操作性、维护和成本。军用发动机对热段部件更长使用寿命和更高推重比的追求为陶瓷材料打开了大门。陶瓷基复合材料 (CMC) 适用于暴露在高温(高达 1000°C)下的加力燃烧段,包括高热梯度。因此,人们继续对在军用燃气涡轮发动机中开发、测试和部署 CMC 感兴趣,一些开发已经取得成功。这是为 F/A-18 E/F 超级大黄蜂 2 战斗机提供动力的 F414 发动机喷嘴引入 SiC/C CMC 的情况,以及为阵风 3 战斗机提供动力的 M88 发动机喷嘴外襟翼引入 C/SiC CMC 的情况。考虑用于燃气轮机部件的 CMC 涵盖了通过化学气相渗透 (CVI)、溶胶凝胶路线、聚合物渗透和热解 (PIP) 和熔融渗透 (MI) 4 制造的各种纤维和基质。所得材料能够承受排气喷嘴的高温和热疲劳。然而,CMC 组件的耐久性与其抗氧化性直接相关,这会影响其热机械潜力并导致部件破裂。已经对几种 CMC 密封件进行了地面测试,并在具有代表性的全地面发动机寿命后测量了机械性能。近几年,斯奈克玛推进固体公司 (SPS) 开发了先进的 SiC/SiC 和 C/SiC 材料,包括多层编织和自密封基质。普惠公司和空军研究实验室正在考虑将这些材料用于 F100-PW-229 发动机喷嘴发散密封件,该密封件为 F16 和 F15 战斗机提供动力。本文介绍了发动机经验和后测试特性的结果。将讨论材料系统对燃气轮机喷嘴应用的适用性。
如何使用 NEFFY ®(肾上腺素鼻喷雾剂) 1. 从包装中取出 neffy。拉开包装取出 neffy 鼻喷雾剂装置。 2. 如图所示握住装置。用拇指握住柱塞底部,用手指握住喷嘴两侧。不要拉或推柱塞。不要测试或灌注(预喷)。每个装置只有 1 次喷雾。 3. 将喷嘴插入鼻孔,直到手指触碰到鼻子。将喷嘴笔直插入鼻子,指向前额。不要将喷嘴指向(倾斜)鼻中隔(两个鼻孔之间的壁)或鼻子外壁。 4. 用力向上按压柱塞,直到其弹起并将液体喷入鼻孔。服药期间或服药后请勿吸气。如果有任何液体从鼻子滴出,您可能需要在检查症状后再给予第二剂 neffy。 5. 如果在首次服药后 5 分钟内症状没有改善或恶化,请用新的 neffy 装置向同一鼻孔注入第二剂。
参考文献: • Honore, M。“通过激光金属沉积对火箭喷嘴延伸部分进行结构强化”。支持沃尔沃通道壁喷嘴。Force Technology。MTI Mtg Laserfusing 演示。2013 年 2 月 1 日。 • O'Neill., W., Cockburn., A., 等人。“Ti 和 Ti64 合金的超音速激光沉积”。第 5 届高功率光纤激光器及其应用国际研讨会/第 14 届激光光学国际会议。2010 年 7 月 1 日。俄罗斯圣彼得堡。 • Paul R. Gradl。“液体火箭通道壁喷嘴的快速制造技术”,第 52 届 AIAA/SAE/ASEE 联合推进会议,推进和能源论坛,(AIAA 2016-4771) • Gradl, PR、Mireles, O.、Andrews, N。“推进系统增材制造简介。 10.13140/RG.2.2.13113.93285
台面安装水槽水龙头,中心距为 8 英寸。5 3 ⁄ 8 英寸刚性/摆动鹅颈喷嘴和 4 英寸腕式手柄。Quaturn 阀杆单元。喷嘴内装有 1.6 gpm 内部流量控制和流量调节器适配器(而不是曝气器),可减少细菌生长并产生层流水流,从而大大减少水溅,符合大多数规范。抛光铬饰面。符合 ADA 要求。
达到碳Not效率的热力学气体功率周期需要等温膨胀,13与过程缓慢相关,并导致功率输出可忽略不计。这项研究14提出了一种实用方法,用于快速接近等温气体的扩张,促进有效的热量15发动机而无需牺牲功率。该方法涉及传热16液体中的气泡膨胀,从而确保有效且近等温热的交换。混合物通过17个收敛的喷嘴加速,将热能转化为动能。利用这些喷嘴的等温膨胀的新型有机18蒸气循环建议利用低19年级的热源。空气和水的喷嘴实验产生的多质指数<1.052,20比绝热扩张高达71%的工作提取。在小尺度21加热发动机上的模拟表明,使用这些喷嘴进行推力产生,可以减少热量22在周期中传输不可逆性,从而使功率输出23高达19%的功率输出23。这项工作为有效的24个高功率热力解决方案铺平了道路。25