地热井是任何地热发电设施中的关键组成部分和大多数资本密集型部分。但是,他们经常在一生中经历压力下降,在某些情况下导致井压力低于发电厂的运营条件,这使得井无法使用发电。这可以使整个项目更加昂贵,因为必须钻出其他井来补偿不可用的蒸汽以维持所需的电厂输出。本研究探讨了使用弹出器来解决该问题的可能性。弹出器已用于石油和天然气和制冷行业的各种应用中。在地热发电中,喷射器被广泛用于从冷凝器中提取不可凝聚的气体。弹出器是使用高压流的动能来诱导低压流的流动的静态设备。超音速喷射器通过使用收敛性喷嘴将主要流体加速到超音速条件来起作用。这会产生一种压力,使二次流夹入,混合物在中间压力下退出。这项工作中描述的实验是在雷克雅未克大学能源实验室进行的,以在实验室规模上制造和测试超音速弹出器。是为了在不同的压力下连接两个饱和蒸汽流,并将结果与早期研究中开发的分析模型进行比较。该实验集中在喷射器尺寸对性能的影响上,特别是恒定面积混合部分(CAM)。该实验成功地证明了喷射器通过表现出受到压力和二次流的夹带而起作用,尽管与分析模型没有良好的匹配。从实验中,使用夹带比率的5 mM凸轮排出器提供了最佳的结果,达到了压力和出口压力以衡量其性能。分析模型还用于设计潜在的超音速喷射器,以连接肯尼亚奥尔卡里亚地热场的两个生产井。设计表明,可以使用此弹出器产生另外的2.2 MW电力。
惯性静电约束 (IEC) 利用强电场来产生和约束等离子体。它已广泛用于进行核聚变反应,并在商业上用作活化分析的中子源。本研究调查了 IEC 推进器的两种不同放电模式,即“喷射”模式和“喷雾”模式。本文比较了 IEC 系统在各种初步设计方案下的放电特性,例如阴极网格设计和阴极网格尺寸。高分辨率图像用于在多个操作点进行强度分析。基本法拉第探针用于定性记录等离子体电流密度的变化。结果表明,在更负的电位下偏置阴极会导致网格吸收的电流和可见等离子体的可见强度增加。电流和光强度逐渐增加,直到发生从“喷射”到“喷雾”的模式转变。换句话说,“喷射”模式始终先于“喷雾”模式。此外,背景压力和施加的阴极电位被证明是 IEC 设备的两个主要操作变量。最后,当设备以“喷雾”模式运行时,记录到更高的电流密度,然而,在“喷射”模式下,喷出的等离子体更加准直。
喷射混凝土必须适合现场运输(泵送)和应用(喷涂)过程。因此,必须获得合适的稠度和流变性以便浇注。本文评估了各种粘度调节剂 (VMA) 对湿混喷射混凝土流变性和触变性的影响。使用了六种 VMA,根据其成分分为三组:基于二氧化硅、层状硅酸盐的添加剂和聚合物添加剂。在砂浆中深入研究了这些流变改性剂,获得了材料的屈服应力 (τ o ) 和塑性粘度 (μ) 的值,以及触变性(滞后面积),它代表了流体结构恢复所需的能量。为了获得这些参数,使用实验室流变仪在动态状态下测试流体,并施加剪切速率斜坡。此外,通过在流动台试验中获得流动台直径来确定砂浆的稠度。该评估是在含有不同含量的高效减水剂 (SP) 的砂浆中进行的。所有这些信息使得评估 SP 与每种 VMA 结合的影响成为可能,获得一个可工作性箱,确定滞后区域并验证哪些组合获得了优于对照混合物(不含 VMA)的流变行为。所述结果与现场进行的喷射混凝土混合物中获得的回弹指数相关。砂浆的触变性和现场的回弹率值导致了最准确的相关性,从而可以选择最有效的 VMA 用于喷射混凝土。最后,两种综合结果(实验室和现场)允许一种有助于设计和优化湿混喷射混凝土的分析过程。
旋转过程中的中断是由质量削减或旋转单元上的天然纱线破裂引起的,这意味着生产中的重大损失。过度效率低下,J 70具有200个完全独立的,单独自动化的旋转单元。这些旋转单元中的每个单元都独立维修所有质量切割和自然纱线断裂。最多20个旋转单元可以同时执行此操作,并且在维修完成后恢复旋转。因此,不再需要等待用于在先前型号上执行这些任务的机器人。
许多病毒通过病毒壳中的纳米通道弹出,这是由高密度基因组堆积产生的内力驱动的。DNA出口的速度受限制分子迁移率的摩擦力控制,但这种摩擦的性质尚不清楚。我们引入了一种方法,通过用光学镊子测量噬菌体Phi29衣壳的DNA出口来探测紧密限制的DNA的迁移率。我们测量了极低的初始退出速度,速度指数增加的制度,主导动力学的随机暂停和较大的动态异质性。使用可变的力量测量提供了证据,表明初始速度由DNA-DNA滑动摩擦控制,这与纳米级摩擦的Frenkel-Kontorova模型一致。我们证实了理论模型预测的弹出动力学的几个方面。暂停的特征表明它与软性系统中“堵塞”的现象相连。我们的结果提供了证据表明DNA-DNA摩擦和堵塞控制DNA出口动力学,但这种摩擦并没有显着影响DNA包装。
火灾和爆炸综合 如果设备意外释放易燃气体或挥发性液体,则可能会发生爆炸。爆炸中火焰的通过可能会点燃释放的易燃气体,从而导致火灾。为了保护工艺设备和结构构件免受气体爆炸产生的过压和任何后续火灾的影响,通常使用被动防火措施。如果气体爆炸先于火灾发生,则被动防火措施在气体爆炸后必须保持完好。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
金属有机骨架 (MOF) 是具有独特吸附性能的微孔结晶配位聚合物。它们在催化、1 气体存储、2 分离 3 和微电子领域显示出了巨大的潜力。4 作为传感器涂层,它们可以将分析物富集在传感器表面,在某些情况下是选择性的。5,6 然而,由于缺乏简便和通用的沉积和图案化技术,它们的集成受到阻碍。7,8 基于溶液的 MOF 沉积技术,例如化学溶液生长或液相外延,可能会导致腐蚀或污染。4 化学气相沉积可以避免这些风险,9 但受到金属前体的反应性和连接剂的挥发性的限制。已经展示了多种用于 MOF 涂层的图案化方法。减法方法(例如剥离图案化 9,10 或无抗蚀剂直接光刻 11)涉及修改整个基板,这增加了残留物污染的风险。相比之下,加法图案化技术(例如选择性生长 12、微接触 12,13 和喷墨打印 14,15)仅将目标材料沉积在基板的有限区域上。喷墨打印特别
β-Mercaptoethanol PanReac-AppliChem A4338,0100 Sodium chloride (NaCl) PanReac-AppliChem 131659.1211 Tryptone Condalab 1612 Yeast Extract Condalab 1702 Bacteriological Agar Condalab 1800 Agarose D1 Medium EEO Condalab 8019 Liquid nitrogen n/a n/a Critical commercial assays NEBuilder® HiFi DNA Assembly Master Mix New England Biolabs E2621S Phusion TM High-fidelity DNA polymerase Thermo Fisher Scientific F530S MluI (10 U/µL) Thermo Fisher Scientific ER0561 BsaIHF®v2 (20 U/µL) New England Biolabs R3733S DNA Clean & Concentrator TM -5 Zymo研究D4004Nucleospin®质粒DNA纯化机构 - 纳格尔740588.250 Ribolock RNase抑制剂(40 u/μl)Thermo Fisher Scientific EO0381恢复TM逆转录(TM)逆转录酶Thero Fisher Fisher Fisher Scientific EP0441 Therus prolainsir prolapers themophirs dna Polymsisriast dna Polymsiss dna Prolymasse:003 3.003.003 3.003 3.003 3.003 3.003 3.003 3.003; 003 3.003 3.003 Nicotiana Benthamiana cas9(Bernabé-ortts等,2019)N/A寡核苷酸D2409 atttatattattAttCataCaatCaaAcc