上午 8:00 – 上午 9:57 并行会议 A01 焦点会议:流体 接下来:软体撞击流体 I Sagamore 宴会厅 1–7 A02 空气动力学:常规 130 A03 主动物质 I:主动湍流 131 A04 动脉瘤 132 A05 动物飞行:飞行昆虫 I 133 A06 高雷诺数游泳 I 134 A07 生理、发声和言语 135 A08 气泡:常规 136 A09 CFD:浸入边界法 I 137 A10 粒子-湍流相互作用 I 138 A11 声学:常规 139 A12 颗粒流 I 140 A13 生物流体动力学:生理 I 141 A14 自由表面流:常规142 A15 实验技术:生物和多相测量 143 A16 流动控制:概述 144 A17 流动不稳定性:多相流和瑞利-泰勒 145 A18 喷射流 I 205 A19 非牛顿流:理论与建模 206 A20 非线性动力学:库普曼和相关方法 207 A21 湍流:湍流建模的机器学习方法 I 208 A22 多孔介质流:对流和传热 231 A23 自由表面流:自然流 232 A24 反应流:LES 和 DNS 233 A25 表面张力效应:界面现象 I 234 A26 波:非线性动力学与湍流 235 A27 涡旋动力学:概述 I 236 A28 CFD:不确定性量化和机器学习 237 A29 液滴:电场效应 238 A30 液滴:超疏水表面和多液滴相互作用 239 A31 流动不稳定性:复杂流体 240 A32 地球物理流体动力学:大气 241 A33 微/纳米流动:通道 242 A34 相变 I 243 A35 一般流体动力学:越过障碍物的流动 244
北大西洋喷气流强烈影响西北欧洲的天气,并在确定北大西洋大气循环指数(如北大西洋振荡(NAO),东大西洋(EA)模式)和斯堪的纳维亚(SCA)模式的强度和迹象中发挥了重要作用; the anomalous weather pat- terns of a particular season can be described by the inter- play of these modes of variability (Hall & Hanna, 2018 ).最近的极端季节的特征是不同的喷气流配置,喷气强度和位置与西北欧洲各地经验丰富的极端天气条件(例如,在温度和降水量)之间有着密切的联系(Hall&Hanna,2018年)。极端的季节性天气在避免风险方面具有重要的社会经济影响,其成本对保险业(例如,2013/14年冬季英国的15亿英镑(Davies,2014年))对农业,粮食安全,能源供应,公共健康/公共卫生/福祉和恶劣天气计划的影响。直到最近,北大西洋大气变异性很大程度上是由于不可预测的波动(Stephenson等,2000)。然而,动态季节性预测系统已被用来开发熟练的季节性预测,从未来几个月开始为英国冬季天气(Scaife等,2014)。这些喷气流变异性的驱动因素可以互相反对或加强,并且有迹象表明它们之间的相互作用(Hall等,2019)。喷射流变异性的驱动因素显示出季节性变化和喷气流变异性的独特驱动因素在不同的海子中起作用。Many fac- tors (drivers) appear to influence the NAO and jet-stream changes, and these potential drivers can be broadly grouped into cryosphere effects from variations in sea-ice extent and snow cover, oceanic effects from North Atlan- tic sea-surface temperatures (SST), tropical influences such as the El-Niño Southern Oscillation (ENSO), and stratospheric effects due to stratospheric circulation vari- ability, solar variability, volcanic eruptions and the Quasi-Biennial Oscillation (QBO) (Hall et al., 2015 ).除了这些可识别的驱动因素外,由于混乱的内部动力学过程,北大西洋喷气机的一部分的特征是内部未强制性的可变性驱动的(Kushnir等,2006; Lorenz,1963)。现在已经达成共识,即在气候模型中可以再现了一些观察到的驱动因素,但对最近确定的北大西洋地区驱动器的驱动因素的理解提高了,这对于在英国季节性气候预测中取得进展至关重要(Hall等人,2015年,2015年)。The focus of government-funded research is on dynami- cal forecast systems; however, such forecasts are not always
与隔离发生的危害相比,风和降雨极端的同时出现会产生更大的影响。这项研究评估了从两个角度来看,冬季,在冬季,热带气旋(ETC)产生的化合物极端。首先,我们用极端的风和降雨进行评估;使用风严重程度指数(WSI)和降雨严重程度指数(RSI)来测量占地面积的严重程度,该指数(RSI)占了这两种危险的强度,持续时间和面积。其次,我们评估了6小时的风和降雨量的局部共发生。我们从这两个角度量化了复合极端的可能性,并在控制(1981 - 2000年)和Future(2060 - 2081,RCP8.5)中的许多驱动程序(喷气流,旋风轨道和前线)中进行了表征,来自当地对流的2.2 KM Crimate Promimate Proimate Proime jections and Futor and Future(2060 - 2081,RCP8.5)。模拟表明,将来在同一风暴中产生极为严重的WSI和RSI的ETC的可能性增加,发生的频率高3.6倍(与对照中的18年相比,每5年一次)。这种频率的增加主要是由降雨强度增加驱动的,这主要是热力学驱动因素。但是,未来的风也随着强度增强的喷射流而增加,而这些事件中向南的流离失所的喷气和旋风轨道会导致温度的动态增强。这与Clausius-Clapeyron一致,这加剧了降雨,并且由于额外的潜热能而可能导致风速。未来的模拟还表明,在当地相互发生的风和极端降雨时,土地面积有所增加;尽管相对增加在冷锋附近最高,这在很大程度上解释了降雨量增加,这表明对流活动增加。在严重的WSI和RSI的暴风雨中,这些本地共同发生的极端情况更有可能,但不仅仅是局部共发生的,因此需要在ETC内部单独的驱动因素的巧合。总的来说,我们的兴趣揭示了许多促成复合风和降雨极端及其未来变化的因素。需要进一步的工作来通过对其他气候模型进行抽样来了解将来响应中的不确定性。