Tommaso Calarco教授率先应用了量子最佳控制方法在量子计算和多体量子系统中的应用。目前,科隆大学托马索大学理论物理学研究所的ForschungszentrumJülich彼得·格伦伯格研究所的量子控制研究所主任,汤马索大学理论上的量子信息教授,在费拉拉大学获得了博士学位,并开始在P. Zollerererersh of P. Zollersrruck of P. Zollersrruck of P. Zollerersrruck of inssfruck。他于2004年被任命为特伦托BEC中心的高级研究员,并于2007年在乌尔姆大学(University of Ulm)担任物理学教授,随后他成为复杂量子系统研究所和综合量子科学技术中心的主任。他于2016年撰写了《量子宣言》,该宣言发起了欧洲委员会的Quantum旗舰计划,目前是旗舰管理机构之一的主席:量子社区网络(QCN)。在2020年,他与QCN一起发起了一项计划,以建立欧洲量子工业的财团,该联盟已于2021年以欧洲量子工业联盟(QUIC)的名义合法建立。
*第一个版本:2021年2月。自这个项目开始以来,我们感谢克里斯蒂安·海尔维格(Christian Hellwig)的持续支持。我们要感谢Bj�OrnLarsson,他通过与我们分享他的历史飞行时间表来使该项目成为可能。我们感谢Taylor Jaworski和Carl Kitchens与我们共享高速公路数据。本文从Antonin Bergeaud,Davide Cantoni,Thomas Chaney,Fabrice Collard,Ben Faber,Ben Faber,Ruben Gaetani,Victor Gay,Ulrich Hege,Enrico Moretti,Luigi Pascali,Luigi Pascali,Mohamed Saleh,Mark Schankerman,Mark Schankerman,Claudia Steigley,nicemelley,nicemelely,nicemelely,nice nicelely,nice nicelely,nice nicelele,以及伯克利,弗雷伊特,IMF,Insead/coll`欧格·德兰西,山脊增长,rief paris,sed,图卢兹,城市经济协会,是普林斯顿等的众多参加研讨会和会议的参与者。†电子邮件:paulystefan@gmail.com‡奥斯陆大学。通讯作者,电子邮件:fernando.stipanicic@econ.uio.no
使用Madgraph + Pythia8带有CMS Delphes检测器模拟使用预训练的模型作为起点,并使用不同的数据集
噼啪声是噪声的一种感知方面,由脉冲声冲击引起,可在超音速喷气式飞机(包括军用飞机和火箭)的噪声中观察到。整体和长期频谱噪声指标不能解释对噼啪声的独特感知。听力测试旨在更好地了解对噼啪声的感知,并检查其与物理噪声指标的关系,例如压力波形的一阶导数的偏度,以下称为导数偏度。据推测,随着导数偏度的增加,对噼啪声的感知趋于增加。对 31 名受试者进行了两次听力测试,以检查他们对噼啪声的感知。在第一次测试中,受试者比较并排序了包含噼啪声的声音。在第二次测试中,采用类别量表,受试者使用类别标签对噼啪声内容进行评分:1) 无噼啪声的平滑噪声,2) 无噼啪声的粗糙噪声,3) 零星或间歇性噼啪声,4) 连续噼啪声,5) 强烈噼啪声。顺序和评级测试都证实了对裂纹的感知和导数偏斜之间存在高度相关性。这些见解将有助于为社区噪音模型提供信息,使它们能够将喷气裂纹引起的烦恼纳入其中。
抽象的喷射淬灭,当Parton Cascade发生在介质内时,QCD射流的性质的修改是一种本质上的量子过程,其中颜色相干效应起着至关重要的作用。尽管在过去几年中取得了很大的进步,但对蒙特卡洛·帕顿(Monte Carlo Parton)阵雨的模拟仍然无法访问。在这种情况下,值得尝试替代配方,量子计算中的快速发展提供了一个非常有希望的方向。本文的目的是引入一种策略,以模拟单个粒子动量扩展,这是射流淬火的最简单构件。动量拓宽是由于与基础培养基相互作用的夸克或Gluon横向妈妈的修改,以QCD背景字段建模。在我们在这里考虑的αS中的最低顺序,动量扩大不涉及parton分裂和粒子数量保守,从而大大简化了量子算法的实现。但是,此数量与RHIC,LHC或未来EIC的现象学非常相关。
结果:较短的睡眠饲养者占32.25±6.99岁的212名护士的61.8%。异常的社交喷气行。与正常的喷气lag组相比,经历异常社交喷气lag的群体表现出明显较低的早晨情感和更高的夜晚(EV)(分别为p = 0.003和p = 0.004)。dm风险占全体6.6%。在年龄较大,工作经验较长的人,较高的体重指数(BMI),男性性别和较低的EV评分中观察到DM的较高风险(P <0.001,P <0.001,P <0.001,P <0.001,P = 0.006和P = 0.042)。独特的得分与DM风险评分呈正相关(r = 0.168; p = 0.014),而它们与夜班计数成反比(r = -0.149; p = 0.022)。BMI的较高值(优势比= 1.255; 95%置信区间= 1.036-1.520; P = 0.020)和男性性别(优势比= 7.350; 95%置信区间= 1.265-42,161; p = 0.026)与DM的风险增加有关。
由于操作较为保守,在线/触发应用总是落后于离线应用。尽管如此,实验还是尽可能迅速地在在线应用中实施离线方法,并实现与离线相比的高保真性能,从而降低与触发相关的系统不确定性。
噼啪声是噪声的一种感知方面,由脉冲声冲击引起,可在超音速喷气式飞机(包括军用飞机和火箭)的噪声中观察到。总体和长期频谱噪声指标不能解释对噼啪声的独特感知。听力测试旨在更好地了解对噼啪声的感知,并检查其与物理噪声指标的关系,例如压力波形的一阶导数的偏度,以下称为导数偏度。假设随着导数偏度的增加,对噼啪声的感知趋于增加。对 31 名受试者进行了两次听力测试,以检查他们对噼啪声的感知。在第一次测试中,受试者比较并排序了含有噼啪声的声音。在第二个测试中,采用类别缩放,受试者使用类别标签对噼啪声内容进行评级:1) 无噼啪声的平滑噪声,2) 无噼啪声的粗糙噪声,3) 零星或间歇性噼啪声,4) 连续噼啪声,5) 强烈噼啪声。顺序和评级测试均证实,噼啪声感知与导数偏度之间存在高度相关性。这些见解将有助于为社区噪声模型提供信息,使它们能够纳入喷气噼啪声造成的烦恼。
理解喷气机的子结构是高能物理学的基本挑战,因为其固有的复杂性和多规模动力学。虽然诸如蒙特卡洛模拟之类的经典方法是重现喷气机现象学特性的功率工具,但这种方法难以准确捕获有关射流形成和进化的复杂相关性和随机过程。量子构成对抗网络(QGAN)通过利用量子计算以数据驱动方式建模量子计算对高维相关性和纠缠的能力来提供一种新颖的补充方法。在这项工作中,我们采用了QGAN框架来对喷气机中领先的黑龙的运动学进行建模。我们的研究调查了量子机器学习是否可以提供对喷气子结构建模的新见解,尤其是在经典方法遇到限制的地区。结果表明,QGAN可以有效地捕获喷气子结构的关键特征,为探索高能物理学中驱动喷气机形成和进化的机制铺平了道路。