摘要:该项目涉及在农业中设计和开发一种用于农药喷涂的自动驾驶机器人,旨在提高农药施用的效率和精度。传统的喷涂方法可能导致覆盖范围不均匀和过度使用化学物质,从而造成环境伤害和健康风险。拟议的机器人将利用先进的机器学习算法来准确识别和处理特定区域,减少浪费并优化覆盖范围。机器人的有效性将通过现场测试评估,重点是其精度,效率和对农作物健康和产量关键词的总体影响:以下是所选的关键字:1。自主机器人2。农药喷涂3。精确应用程序4。效率5。机器学习算法6。经济稳定7。L298N电动机驱动器8。水泵电机9。ESP32 10。人工成本11。安全与健康12。作物产量
一系列喷射/冲击波是由点燃氧气和乙炔混合气体引起的可控爆炸产生的。冲击波的高能量和爆炸产生的温度使粉末有效地沉积在所需的部件上。通过与粉末喷射同步移动部件,可以实现更厚的粉末沉积层。作为一种专有工艺,爆炸喷涂系统 (Mark I) 于 1997 年在印度本土制造,采用机械移动部件供气。随后,该技术被转让给印度的多位企业家。系统性能非常出色,对民用和战略部门的贡献非常突出。为了满足当前市场需求并与其他热喷涂系统竞争,现在已开发出一种新版本,它具有更高的点火频率、更长的操作时间和通过精确的气体控制实现高质量点火。
热喷涂包含各种看似简单的表面工程工艺,其中固体材料(线材、棒材、颗粒)被等离子射流或燃烧火焰快速加热,熔化并推向要涂覆的基材。 基材表面的熔融颗粒快速凝固,一点一点积聚成一层,该层可具有多种功能,包括防止磨损、侵蚀、腐蚀和热或化学降解。 涂层还可以赋予基材特殊的电、磁或装饰性能。 许多工业领域都采用厚涂层来恢复或获得所需的工件尺寸和规格。 本文在编写时考虑到了材料工程和材料科学专业学生的理论和实践要求。它是根据 1991 年至 1995 年期间在泰国曼谷吞武里国王理工学院能源与材料学院材料工程专业硕士生课堂上以及 1993 年以来在弗莱贝格矿业技术大学技术 (应用) 矿物学专业学生课堂上所讲授的课题发展起来的。作者在 1987 年至 1988 年担任加拿大艾伯塔省埃德蒙顿市艾伯塔研究委员会工业技术部工业产品与材料科科长期间,也积累了等离子喷涂技术方面的经验。
许多先进的反应堆概念要求材料在长期使用期间能够抵抗恶劣环境中的各种应力。因此,在某个时候,材料降解(例如蠕变、疲劳、脆化)将开始,如果不加以控制,其发展最终可能导致失效。虽然降解过程根据材料、负载和条件的不同而不同,但它们总是从微观结构水平开始,然后发展到宏观尺度,最终断裂。由于停机检查成本极高,因此最好实施在线状态监测,以保持工厂运行,直到需要维护。超声导波与损伤的相互作用使其非常适合状态监测,如下所述。本文研究的在线状态监测系统的要求是 (i) 耐高温和 (ii) 检测早期损伤的能力。
● Clexio 开发了一种技术,可将精确剂量的药物输送到鼻腔的特定位置。该设备体积小、便于携带、使用简便,适合自行给药。该设备可以输送各种配方,并具有所需的喷雾羽流几何形状。● SPRACISE 的第一个原型被开发用于针对鼻腔中的蝶腭孔,以缓解丛集性头痛。目前正在进行 1b 期研究测试● 其他潜在用途:
冷气动力喷雾(CGD)是用于此过程的一般术语,尽管它也可以称为动力学金属化或动态金属化(Katanoda等,2007)。在1980年代初期首次在俄罗斯研究了使用CGDS方法涂层形成的现象。俄罗斯科学院西伯利亚分支机构的S.A. Khristianovich S.A. Khristianovich理论和应用机械学院(ITAM)的科学家团队开发了一种技术,可以通过将颗粒加速到超音速速度来应用金属涂料。这项研究导致了两项苏联专利的创建,该专利涵盖了使用高压气体在高于颗粒的熔点的高压加速金属颗粒的方法和设备,从而形成了非孔涂层,并形成了强烈的粘附于底物(Alkhimov等,1990年)。
许多先进的反应堆概念要求材料能够在长期使用期间抵抗恶劣环境中的各种应力。因此,在某个时候,材料会开始降解(例如蠕变、疲劳、脆化),如果不加以控制,其发展最终会导致失效。虽然降解过程会根据材料、负载和条件的不同而有所不同,但它们总是从微观结构层面开始,然后发展到宏观层面,最终断裂。由于停机检查成本极高,因此最好实施在线状态监测,以保持工厂运行,直到需要维护为止。超声波导波与损伤的相互作用使它们非常适合状态监测,如下所述。本文研究的在线状态监测系统的要求是 (i) 耐高温和 (ii) 检测早期损伤的能力。
基于聚(乙烯基氟化物-co-trifluoroethelene)/钴铁液,P(VDF-TRFE)/COFE 2 O 4的喷雾印刷磁电(ME)复合材料的性能。表明,对于20 wt。%铁氧体含量,复合材料表现出纤维状孔结构,≈1.8GPA Young的模量,11.2 EMU.G -1,6.0 EMU.G -1磁性磁性和2050 OE的磁性磁性的饱和磁化。此外,证明了34个介电常数(在10 kHz时)和27 pc.n -1压电系数。在2450 OE的最佳磁场下,如此高的介电和压电响应解释了21.2 mV cm -1 oe -1的ME响应,这比通过bar涂层制备的相似复合材料的响应优于。高ME响应和简单可扩展的打印方法证明了这些材料对于具有成本效益和大规模传感器/执行器应用的适用性。