ISSN 1330-3651 (印刷版), ISSN 1848-6339 (在线版) https://doi.org/10.17559/TV-20201129072212 原创科学论文 巷道非直壁段锚喷支护力学模型及参数优化 程云海,李峰辉*,李刚伟 摘要:巷道锚喷支护一般采用梁模型计算,但巷道弯曲侧锚喷支护力学状态与直侧有明显不同。为了合理确定巷道弯曲侧锚喷支护参数,对喷层受力进行分析。将锚喷支护结构简化为固结梁与圆柱耦合的力学模型。为探明圆形巷道(或圆弧段)锚喷支护的力学机理,合理确定锚喷支护参数,对喷混凝土层进行应力分析。将锚喷支护结构简化为固结梁与圆柱体耦合的力学模型,结合摩尔-库仑强度理论,建立了喷混凝土层厚度、喷混凝土强度、锚杆间距、锚杆长度对围岩自承能力影响的力学模型,确定了锚喷支护参数与围岩自承能力的影响规律。研究结果表明:喷混凝土强度与围岩自承能力呈线性关系,喷混凝土厚度与围岩自承能力呈二次函数关系,锚杆间距、锚杆长度与围岩自承能力呈三次函数关系。研究成果对巷道曲线边坡锚喷支护参数的确定具有一定的指导意义。关键词:锚喷支护;筒体;力学模型1引言锚喷支护技术广泛应用于矿山、隧道、地铁等地下工程[1-6]。锚喷支护能最大程度地保持围岩的完整性和稳定性,充分发挥围岩的支护作用,对控制围岩的变形、位移、裂隙发展等起着重要作用[7-10]。国内外已有不少学者对锚喷支护技术进行了研究。李等[11-12]。[11]确定了喷层破坏时中性层的位置,探究了不同支护方式下锚喷支护参数与围岩自承能力的关系,建立了巷道围岩自承能力与锚杆间距、喷层厚度、喷层强度之间的力学模型。温等[12]建立了由系统锚杆支撑的外拱、喷层支撑内拱和钢框架组成的组合拱力学模型。王等[4]在对巷道围岩和喷层应力分析的基础上,建立了喷层厚度、喷层强度、锚杆间距对围岩自承能力影响的力学模型。方等[5]研究了喷层厚度、喷层强度、锚杆间距对围岩自承能力的影响。 [13] 设计了高预应力强锚喷支护方案,并利用振弦喷浆应力仪对方案实施后喷浆层的应力状态进行监测。吕建军等 [14] 提出了厚软岩巷道全断面锚固的二维半模型,建立了围岩及锚固系统的理论模型,得到了应力释放、锚杆与围岩耦合的分布规律。荆建军等 [15] 研究了预应力锚杆的力学性能
在磁性喷嘴中研究了不稳定模式的存在。静电探针用于表征稳态的特性,探针对有偏见,用于在三个维度上测量波传播。在低流量和高流量条件下重复该实验。在这两种情况下都观察到了不一致的模式,并确定了较低的杂化漂移不稳定性的描述。在下游形成푚= 1模式的低流案例中也观察到低频模式。理论上,这波可能是抗漂移不稳定。异常碰撞频率是为每个波的定义的,并在电子横侧传输和推进器性能的背景下进行了讨论。发现不一致的模式在两种工作条件下在不同的电子种群中都具有很强的效果,但是在低流量的情况下,几个数量级强。低频模式的影响似乎显着少于抗漂移不稳定性理论下的不连贯模式。但是,观察到在上游区域中与不一致的模式相反,这意味着它可能诱导收敛的电子传输。讨论了这两种模式对结论和推力产生的含义。
Cri du Chat(CDC)综合征是一种罕见的染色体疾病,这是由于染色体之一的短臂上发生的尺寸删除而导致的。这种疾病影响了50,000个出生,是导致发育迟缓的原因,其机制仍然无法解释。tert,sema5a,ctnnd2,tppp,映射在5个短臂中,已知在大脑中表达,并在神经系统的发育,少突核细胞以及谷氨酸和多巴胺剂的突触传播中发挥作用。了解它们的单倍不足如何影响疾病的发展和表现。在没有动物模型和可及的人体组织,人类多能干细胞(IPSC)的情况下,直接从患者体细胞中重新编程了一个新的疾病模型区域,因为它们几乎可以分化为任何细胞类型。我们的研究报告首次报道了CDC-IPSC线的神经元干细胞(NSC)的产生,此外,随后分化为异质性神经元种群。还通过比较了IPSC,NSC和神经元线中的表达水平来评估提到的基因的基因表达。本研究代表了创建体外CDC神经元模型的第一种也是最具创新性的方法,以具有研究病理过程的新转化框架。
“欢迎 AI 速递”活动概要 ■ 活动期间:2022 年 3 月 14 日(星期一)0:00 至 2022 年 3 月 27 日(星期日)23:59 ■ 活动详情:在上述期间内首次报名参加“AI 速递”,
对农村发展的支持是普通农业政策的第二支柱,为会员国提供了欧盟的信封,以在多年,共同资助的计划下在全国或地区进行管理。总共预见了所有27个成员国的114个计划以及英国的4个计划。2014 - 2020年期间的农村发展法规涉及六个经济,环境和社会优先事项,并且计划包含明确的目标,阐明了要实现的目标。此外,为了更好地协调行动并最大程度地与其他欧洲结构和投资基金(ESIF)提高协同作用,已经与每个成员国达成了一项合伙协议,强调了其广泛的欧盟资助结构投资战略。
位英语 考试 特点 , 采用多 功能 的编排 方法 , 不仅 有助 于考生 理解记 忆单 词 , 准 确掌 握词的 运用 , 而且 能够 使 考生 快 速扩
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。
摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________
SARS-CoV-2 肽选择免疫信息学分析工作流程。A) SARS-CoV-2 抗原选择策略。B) SARS-CoV-2 刺突三聚体 (PDB ID 6VXX) 表面表示为灰色。每个单体的受体结合域 (RBD) 以橙色突出显示。计算机工作流程中排名靠前的表位序列以黄色 (RBD 区域) 和绿色 (其他刺突区域) 突出显示。在顶视图中,选定的肽以红色突出显示 (MHC-I
