为此,接受了以下签名:收缩的电子签名,并指的是证明电子签名与特定人员链接的虚拟文档;数字类型可以由Adobe以真实的方式生成;仅当签名清晰时,签名类型才会被接受,而在图像中没有证明它没有背景并且是透明的。
已研究了白云石灰在铁硅酸盐(透明质酸)熔体中的溶解情况,这些熔体的温度与 LD 吹炼初期(1300°C)的温度相对应。熔体装在铁坩埚中,并置于氩气气氛下的炉中。用白云石灰石制备的白云石灰圆柱体预热至熔体温度,并浸入其中,时间为 15 至 540 秒。取出反应后的圆柱体,在氩气喷射下淬火,以进行显微镜检查和扫描电子显微镜分析。用石灰石制备的方解石石灰圆柱体进行了等效实验。已建立旋转固定式坩埚粘度计技术,并测量了 Cao - »Feof - Si02 - MgO 系统中合成炉渣的粘度。锥体熔融研究 • 用于确定炉渣系统的熔化行为。
1. 内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 2. 普渡大学机械工程学院,印第安纳州西拉斐特,美国 通讯作者 – MP Sealy,电子邮件 sealy@unl.edu 摘要 增材制造 (AM) 镁合金由于拉伸应力和粗大微观结构而迅速腐蚀。提出了将增材制造与层间超声波喷丸循环结合(混合)作为一种解决方案,通过强化机制和压缩残余应力来提高增材制造的镁 WE43 合金的耐腐蚀性。应用层间喷丸加工硬化离散层并形成区域晶粒细化和亚表面压缩残余应力屏障的全球完整性。通常会加速腐蚀的拉伸残余应力降低了 90%。结果表明,通过层间喷丸可以实现对腐蚀的时间分辨控制,并且与打印的 WE43 相比,打印单元内的局部腐蚀减少了 57%。关键词:增材制造、混合制造、镁 1. 引言 随着镁增材制造技术发展到更高的水平 [1],医疗器械和石油压裂行业寻求对负载-压力进行时间分辨的降解。
Jun 13, 2024 — 功能材料事业部拥有先进的火法和湿法冶金工艺,采用侧吹炉工. 艺、真空蒸馏工艺、以及溶剂萃取、离子交换、电解等先进工艺,回收. 和精炼各种含稀散金属固体、浆料和溶液。
金属有机骨架 (MOF) 是由金属离子或金属簇与刚性有机配体配位形成的晶体材料,可形成具有极高孔隙率的一维、二维或三维结构。因此,它们是具有巨大潜力的独特晶体结构。利用它们,可以设计具有非常特殊属性的系统。特别是,由孔隙形成的内部表面可以进行调整,以使其适应特定应用,在表面积与体积比之间“发挥作用”。这些详细的工程特性吸引了许多科学家的兴趣,他们正致力于优化它们以用于工业应用:气体储存和分离、传感器、水和土壤净化、生物医学,还有微电子。在此背景下,我们分析了 7 种 MOF,其预期值为 N:~10% - C:~55% - H:~7% - O:~20%(化合物不含硫)。
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡领域的领军企业福特使用了卡特彼勒开发的 HEUI(液压驱动、电子控制、单体喷射)喷射系统。道奇/康明斯发动机使用博世 P7100 直列式燃油泵。将其视为一个微型直列式六缸发动机,其工作原理就很容易理解了。由泵凸轮轴驱动的六个柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,使燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮旋转计量螺旋,使燃油进入六个柱塞泵。
随着 1994 年废气排放标准越来越严格,需要更高的燃油喷射压力和更及时地将燃油输送到燃烧室。皮卡车领域的领导者福特使用了卡特彼勒开发的一种名为 HEUI(液压驱动、电子控制、单体喷射)的喷射系统。道奇/康明斯发动机使用了博世 P7100 直列式燃油泵。把它想象成一个微型直列六缸发动机,它的工作原理就很容易理解了。六个由泵凸轮轴驱动的柱塞泵通过六条高压燃油管路向喷油器发送燃油脉冲。压力打开喷油阀,让燃油进入燃烧室。使用博世 P7100 燃油泵时,燃油计量(怠速时为 85:1;满载时为 25:1)由燃油齿条和齿轮控制,这些齿轮转动计量螺旋,让燃油进入六个柱塞泵。
2Senior Developer电子健康解决方案,Amman,Jordan摘要:本文考虑了在协作机器人工作区域中用于人类跟踪的凸轮移算法的复杂实现。该研究涵盖了凸轮缩影的算法和数学基础,详细介绍了用于提高跟踪准确性的基本原理和数学模型。在Pycharm环境中开发了一个Python程序,以考虑到实时处理和与机器人系统集成等方面,以有效地实施该算法。该研究对跟踪速度进行了全面评估,研究了算法在不同条件下的有效工作以及它如何影响系统的整体灵敏度。结果证明了凸轮班算法在提供准确和及时的跟踪方面的有效性,突出了其对动态和交互式环境的适用性。这项工作有助于通过提高跟踪功能,在共享工作领域获得更好的互动和安全性来优化协作机器人的性能。
这种超光速曲速引擎的设计正在...about:reader?url=https://academictimes.com/this-design...
背景和目标:镍加工行业一直与二氧化碳排放问题有关。二氧化碳的产生发生在镍加工的不同阶段,从预处理到冶炼和精炼。除了Offgas外,镍加工部门还产生称为炉渣的固体废物,这是冶炼和精炼过程的副产品。镍行业中的矿渣之一众所周知,与其他元素相比,这是占主导地位的。这项研究的主要目的是通过利用从镍加工行业得出的富含铁的炉渣来研究二氧化碳捕获的过程。目的是评估在固体碳酸气体过程中施加富含铁炉炉的可行性,以捕获二氧化碳,重点是化学反应和整体动力学。方法:这项研究中分析的富含铁矿石包含大量氧化铁。从理论上预见到富含铁炉的氧化铁可能会隔离二氧化碳。这项研究是通过准备材料,经过碳酸过程,然后进行各种特征(包括X射线衍射仪分析和热重量分析)开始的。另外,进行计算以确定样品中二氧化碳的百分比和碳化效率。还使用多种模型进行了动力学分析,例如质量传输,化学反应和扩散控制模型,以估计发生的二氧化碳捕获机制。的发现:富富奈克产业的富含铁矿石的二氧化碳捕获能力在某种程度上有限,尽管仍然相对谦虚。富含铁的炉渣在彻底分析后有效地用于捕获二氧化碳。在进行碳酸过程4小时的持续过程后,炉灶中二氧化碳的百分比显着增加,从初始价值从0.28%提高到1.12%。捕获二氧化碳气体的捕获是由于硅酸盐与二氧化碳气体和水蒸气之间的反应形成辅助石。在捕获二氧化碳时,富含铁的炉渣在扩散控制模型下运行。结论:据报道,富含铁的炉渣可在175摄氏度捕获二氧化碳和二氧化碳和水蒸气状况,这是从热力学计算和实验中证明的。铁(II)碳酸盐是一种由富含铁炉灶的二氧化碳捕获反应产生的碳酸盐化合物。然而,在未来的研究中需要考虑铁(II)二氧化碳和水蒸气气氛中碳酸盐的稳定性。将来可以进行进一步的研究,以探索利用富铁炉炉捕获二氧化碳气体的潜力,这是基于这项初步研究的发现。