糖尿病的特征是血糖水平持续升高,格列本脲通常用于控制血糖水平。格列本脲的脉冲式制剂提供可控的定时释放,以解决清晨高血糖问题,从而改善血糖管理并减少并发症。在脉冲式胶囊设计中加入芦荟喷雾干燥粉作为固体塞,可能有助于控制早晨血糖峰值并降低糖尿病患者的甘油三酯水平升高。本研究采用了 Pulsincap® 系统,该系统结合了乙基纤维素 (EC) 包衣胶囊,其中含有优化的格列本脲片剂和可膨胀塞。使用 Soluplus® 开发了固体分散体 (SD),以增强格列本脲较差的水溶性,并通过傅里叶变换红外光谱 (FTIR) 和差示扫描量热法 (DSC) 确认了相容性。胶囊(尺寸“000”)用甲醇和邻苯二甲酸二丁酯溶液中的 10% w/v 乙基纤维素包衣,可在 12 小时内实现缓释。通过湿法制粒配制的速释 (IR) 片剂在 2 分钟内迅速崩解。缓释 (SR) 片剂使用 3² 全因子设计优化,使用不同浓度的 HPMC K4M 和 HPMC K100M CR,释放曲线为 1 小时 16% 至 37%,4 小时 33% 至 74%,8 小时 44% 至 100%。由 HPMC K15M、瓜尔胶和芦荟组成的可溶性栓塞可产生膨胀并控制滞后时间,范围为 7 至 12 小时。脉冲式输送系统有效提高了格列本脲的生物利用度并调节其释放,为糖尿病患者的血糖管理提供了潜在的改善。
摘要:生命微生物的给药是特别感兴趣的,就益生菌的微生物提供了对患者的健康益处的益生菌微生物。有效剂型需要保留微生物活力,直到给药为止。可以通过干燥来提高存储稳定性,并且由于其易于给药和良好的患者依从性,片剂是一种特别有吸引力的最终固体剂型。在这项研究中,研究了通过流体床喷雾剂干燥酿酒酵母的酿酒酵母,因为益生菌的糖果疗法是多种多样的。流化的床颗粒可以比一方面的冻干更快地干燥,另一方面比喷雾干燥更高,这是两种主要使用的微生物生命干燥的技术。酵母细胞悬浮液喷涂到普通片剂赋形剂的载体颗粒上,即磷酸二氨基二硫酸二酸酯(DCP),乳糖(LAC)和微晶纤维素(MCC)。测试了不同的保护剂,例如单,二糖和多糖,但也测试了脱脂奶粉和一只醛醇;从其他干燥技术中知道,它们本身或化学相似的分子可以稳定生物结构,例如细胞膜,从而提高脱水过程中的生存。随着海藻糖和脱脂奶粉的合并使用,生存率是使用保护添加剂的300倍。除了这些配方方面,还考虑了过程参数(例如入口温度和喷雾速率)的影响。颗粒产物的粒度分布,水分含量和酵母细胞的生存能力进行了表征。已经表明,微生物的热应力尤其重要,例如,可以通过降低入口温度或增加喷雾速率来减少。但是,诸如细胞浓度之类的制剂参数也影响了生存。结果用于指定在流体化床颗粒过程中微生物存活的影响因素,并得出它们的联系。颗粒,并评估了微生物的存活,并将其与达到的片剂拉伸强度联系起来。使用LAC实现了整个考虑过程链中微生物的最高生存率。
益生菌的有益特性一直是一个关注点。益生菌在维持胃肠道(GIT)的健康方面起着重要作用,健康的消化系统负责调节身体的所有其他功能。可以通过用益生元制定益生菌的有效性来增强益生菌的有效性,因此形成的制剂称为合成生物。它不仅可以提高益生菌细胞的生存力和稳定性,还可以抑制致病性菌株的生长。乳杆菌和双歧杆菌属。最常用作益生菌。其他微生物属。是芽孢杆菌,链球菌,肠球菌和糖疗法。益生菌可用于治疗糖尿病,肥胖,炎症,心血管,呼吸道,中枢神经系统疾病(CNS)和消化系统疾病。也必须封装促进肠道健康的活微生物。封装益生菌在生产,储存和胃肠道过境期间的风险保护。热,压力和氧化消除了益生菌及其保护质量。封装益生菌可延长其生存力,促进受调节的释放,减少加工损失,并在功能性食品中应用。益生菌是通过喷雾干燥或共隔术产生的微球。该技术调节肠道益生菌的释放并提供抗压力性。此外,用益生元或维生素封装益生菌会增强其功效。自然封装材料,包括藻酸钠,氯化钙,凝胶珠和多糖,在消化过程中促进益生菌的保障措施。然而,几种方法,包括在加热的空气室内液体雾化的地方喷洒干燥,以蒸发水分并产生干燥颗粒,从而提高益生菌的疗效和稳定性。益生菌通过增强抗体和免疫细胞的产生来增强免疫系统功效。它可以打击疾病并增强免疫力。最近的研究表明,益生菌可能有助于调节体重和血糖水平,并影响代谢和胰岛素敏感性。新兴研究表明,“肠脑轴”连接了心理和胃肠道健康。益生菌可以通过影响神经递质的合成和炎症来减轻焦虑和抑郁。正在研究益生菌的皮肤病学优势,这些益生菌预测益生菌的现场递送,封装是一种有效的技术,需要对研究人员进行更多考虑。本综述着重于益生菌,益生元和综合药在预防和治疗人类健康中的应用。
大学,B.G Nagar,卡纳塔克邦571448,印度摘要脂质体,聚合物纳米颗粒和乳液是其他流行的胶体载体的替代品。由于其优势,固体脂质纳米颗粒是在1990年代初开发的,包括受控药物释放,聚焦药物输送和出色的耐用性。在本文中总结了许多用于制造固体脂质纳米颗粒和赋形剂(包括膜承包商技术)的方法,以及它们可能的好处和缺点。固体脂质纳米颗粒(SLN)稳定性依赖于随着时间的推移维持粒径,药物封装和完整性。表面活性剂和脂质等赋形剂会影响稳定性,从而阻止聚集和氧化。干燥技术(例如喷雾干燥和冻干)通过将SLN转换为固体形式,增强稳定性,而脂质组成和药物脂质兼容性是至关重要的因素。因此,对所采用的工具技术以及与SLN制造相关的困难进行了彻底检查。特定的重点放在SLN中的SLN释放模式和药物整合模型上。详细介绍了SLN的主要用途,包括靶向药物输送以及SLN评估中使用的分析方法。这项工作的主要目的是对固体脂质纳米颗粒的详细概述,包括生产方法,表征和给药途径。还包括对SLN输送机制的组成部分和载体的体内命运的讨论。本文的主要关注点是固体脂质纳米颗粒(SLN)。关键字:固体脂质纳米颗粒,固体脂质,表面活性剂,胶体药物载体和药物掺入。引言在生物技术,生物医学工程和纳米技术等领域的进步显着促进了新型药物输送系统的快速增长。纳米技术被广泛用于几种最现代的配方技术中,这需要携带API的纳米结构的发展。纳米技术涉及从1到100纳米的结构进行研究和使用。使用受管制和专注的药物输送机制,纳米技术的主要目标是尽快诊断出实际和迅速的诊断,并像实用性一样有效,安全地对待。纳米颗粒,固体脂质纳米颗粒,纳米悬浮,纳米乳胶,纳米晶体和其他药物输送系统是纳米技术原理创建的一些最受欢迎的药物。固体脂质纳米颗粒(SLNS)于1991年首次开发,比传统胶体载体(如乳液,脂质体和聚合物微粒和纳米颗粒)具有优势。(Khatak等,N.D.2013)
肺部疾病,例如慢性阻塞性肺部疾病,哮喘,社区获得性肺炎,囊性纤维化和COVID-19,是世界第二大死亡原因,成为了重大的健康挑战。因此,纳入纳米颗粒制剂(NP)的发育纳入了含有抗生素或抗病毒药的微粒系统(MPS),是改善这些肺部感情治疗的有前途的方法。政治丙酮酸(PCL)NP可能封装疏水性药物。因此,在这项工作中,我们开发了PCL NP,其磷脂封装了阿奇霉素(AZM)和respdivir(RDV),该溶剂通过乳液扩散蒸发而获得。nps导致在Zeta电势之间的动态光和-4.94和-5.06 eV之间的传播中,在动态光和-4.94和-5.06 eV之间的传播中,平均直径在184-208 nm和多分散性(PDI)之间,保持稳定6个月至4°C。随后,通过喷雾干燥以获得MPS干燥。喷涂干燥参数的优化导致100°C输入温度,64°C输出温度,600 L/h雾化流量,4.55 ml/min的流量和系统吸入70%,产量为63%。通过UV-VIS和HPLC光谱评估的封装效率分别为含有AZM和RDV的配方率为83%和87%。结果表明MPS是多孔球形结构,特定表面积为3.95 g/m 2。激光光衍射表明90%的颗粒为4.06和4.11 µm。粉末制剂的表征是根据形态,特定的表面积,粒径,化学结构,结晶度和扫描电子显微镜,物理学,激光衍射,红外光谱,X射线衍射和热分析的。FTIR分析表明,没有不必要的反应。衍射模式和量热测试表明,AZM和封装的RDV分散在固体聚合基质中。具有单个实习级联撞击剂的体外测试和多个阶段用于了解呼吸道不同部位的颗粒沉积,而39-42%的颗粒对应于可透气的透气分数。磁盘扩散测试表明,含有纳米封装的配方AZM对金黄色葡萄球菌和肺炎链球菌的抗菌作用保持抗菌作用,并具有抑制卤素≥18mm。HUVEC,HFF1和BEAS-2B细胞系表明含有AZM的分散体没有细胞毒性。关于含有RDV的NP,LDH细胞死亡试验表明,在感染SARS-COV-2的VERO E6细胞中使用免费或封装药物和抗病毒药测试之间没有显着差异。因此,两种含有AZM或RDV的配方都有治疗肺部疾病的潜力,并且开发的微观引血系统由一个可靠的肺部递送平台组成,也可以适用于其他抗生素和抗病毒药。
华盛顿大学 PI Rodney Ho “靶向长效联合抗逆转录病毒疗法 (TLC-ART) 项目 - 更新” TLC-ART 项目将多种口服 HIV 药物转化为用于治疗 HIV 的一体化 LAI 药物组合产品。方法。• 定义同步组织和细胞药物靶点(淋巴结和淋巴细胞)以实现持续病毒抑制(TPP)。• 开发适合用途的技术,将多种 HIV 药物物质组合成稳定的可注射药物组合悬浮液产品(需要多种 HIV 药物才能持续抑制病毒)。• 制定创新战略以加速研究和开发。• 寻求首选用户特征研究,以了解患者、付款人、实施者和医疗保健提供者之间的国内和国际差异。• 建立公私合作伙伴关系以支持该计划(捐赠 API、资金、项目参与)。创新。 • 药物组合纳米颗粒 (DcNP) 平台发现:DcNP 技术使具有不同物理化学特性的 API 能够包装在稳定的一体化悬浮产品中,用于注射剂型(例如,使 LPV、RTV 和 TFV 能够包装到单个 SC 注射剂中)。• 监管途径:我们利用具有括号安全性和有效性数据的当前 HIV 药物以及早期 FDA 投入来加速 IND 支持计划。第一个原理证明 - TLC-ART 101(LPV/RTV/TFV)处于第 1 阶段。DcNP 技术支持生产稳定的可注射 LPV/RTV/TFV 剂型。• 需要创新来结合 LPV(疏水性)、RTV(疏水性)和 TFV(亲水性)。• 我们开发了通过喷雾干燥技术并借助脂质赋形剂制造独特的多药域基质 (MDM) 的专有技术。 o 化学/物理相互作用在干粉中形成稳定的 LPV/RTV/TFV 组合物。 o 在高温下重新悬浮和尺寸减小后,冷却的纳米尺寸产品在体外和体内都能很好地悬浮和稳定。 我们利用 IND 支持策略来加速开发。• FDA 指导的监管途径;DAIDS 支持的安全性和毒性研究;以及 cGMP 下的 TLC-ART 101 制造。在健康志愿者中进行的 P1 研究(NCT06850728)。• 单剂量 SC TLC-ART 101(1.5 毫升中 LPV 15.6/RTV 4.1/TFV 9.2 毫克)的安全性、耐受性和 LA 机制;参考为 QD 口服剂量(LPV 800/RTV 200/TFV 300 毫克)。• 初步 57 天研究(n=4):无安全信号;耐受性良好;和 LA PK 特性。 • 研究延长;剂量递增队列正在进行中。 NextGen 产品 – GLAD 项目专注于将 QD 口服 TLD 转化为 QM 注射 TLD(TLC-ART 301),用于中低收入国家的 HIV 治疗。 TLC-ART 301(替诺福韦/拉米夫定/多替拉韦)结合了全球关注的一线 HIV 药物。 • 我们利用与生产 TLC-ART 101 相同的 DcNP 注射平台,并进行了一些修改,以包装 TFV(亲水性)、3TC(亲水性)、和 DTG(疏水)制成稳定的纳米颗粒产品(AIDS 2023)。• 单次 SC 注射取代了每日口服 TLD(30 粒,19.5 克 TLD)的每月药片负担。• DcNP 配方允许同步固定剂量组合以进行集体药物暴露,而不是产生每种 API 固有的不同 PK(例如,Cabenuva [LAI CAB + LAI RPV] 产生不同的 CAB 和 RPV PK)。加速监管途径。