人类在嗅觉上的利益可以追溯到数千年。有关此问题的第一个信息是在埃及纸莎草纸上找到的。sekhut enanuch-法院医师(公元前2500 - 2300年5月2500-2300)是鼻子,喉咙和耳朵疾病的专家。他是一位耳鼻喉科医生,并具有嗅觉。Abdera的Democritus(公元前460 - 370年) ),希腊哲学家认为“感官 - 颜色,声音,气味和味觉是次要品质,取决于原子簇的内部结构。” Democritus认为“世界是由原子周围的原子和真空组成的,这使这些原子的运动,它们的合并和分裂,物质的扩张和体重的变化成为可能。”所罗门,以色列国王(1000-931)认为,有神圣的感官,只能被选中的人(祝福)获得。 这些感觉是眼睛,耳朵,味道和气味 - 感知别人没有经历的神的气味。 在卑诗省的第一世纪,罗马哲学家Titus Lucretius Carus认为,气味是由于刺激嗅觉器官的形状和气味的差异而产生的。 这种称为形状理论的理论在当代理论中得到了批准和传播。Abdera的Democritus(公元前460 - 370年)),希腊哲学家认为“感官 - 颜色,声音,气味和味觉是次要品质,取决于原子簇的内部结构。” Democritus认为“世界是由原子周围的原子和真空组成的,这使这些原子的运动,它们的合并和分裂,物质的扩张和体重的变化成为可能。”所罗门,以色列国王(1000-931)认为,有神圣的感官,只能被选中的人(祝福)获得。这些感觉是眼睛,耳朵,味道和气味 - 感知别人没有经历的神的气味。在卑诗省的第一世纪,罗马哲学家Titus Lucretius Carus认为,气味是由于刺激嗅觉器官的形状和气味的差异而产生的。这种称为形状理论的理论在当代理论中得到了批准和传播。
与统治我们的愿景相反,它是一种不受欢迎且鲜为人知的含义,但至关重要,因为它可以使危险:火,宠坏的食物……他与呼吸的联系使他成为我们无法摆脱的意思,我们没有停止呼吸,我们摄入了气味的分子。与偏见相反,人是一个配备良好的人。人类有400个不同的嗅觉探测器和1000万个嗅觉神经元(Gurden,2024)。他超过了具有良好天赋的著名狗(Porter等,2007)。与动物的比较并不是偶然的,这种感觉是由生命和性的含义(Jaquet,2010年)。康德(1836/1993)谴责他,弗洛伊德判断他的擦除与文化和神经症有关(Coutinho Jorge,2016年)。自18世纪以来,我们的社会想象力变得越来越宽容“坏”气味(Corbin,1982/2016)。
新闻稿,以立即发布NUS医学先驱者开创性技术,直接将药物直接向大脑传递给大脑这项具有里程碑意义的研究,使用鼻细菌技术有望通过绕过2025年2月18日的新加坡血液 - Yong lin Schoolique of Medicine op Shipedical(National University,National Uniession)Singapore(Singapore of Singapore of Singapore of Singapore of Singape)的新加坡血液障碍,为神经疾病的新疗法提供了新的治疗方法直接进入大脑的治疗分子,绕过血脑屏障。Led by Dr Haosheng Shen, lead researcher from the Synthetic Biology Translational Research Programme, NUS Medicine and the NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI) this novel approach utilises a naturally occurring nasal bacterium, Lactobacillus plantarum (Lp), which was genetically engineered to produce therapeutic compounds and release them through a specific nose-to-brain pathway.他们的研究发表在《领先的生命科学杂志》,《细胞》。血脑屏障(BBB)在保护大脑免受有害物质的影响方面起着至关重要的作用,但也为为神经系统疾病提供药物带来了重大挑战。现有的药物输送方法通常以有限的效率而挣扎,需要侵入性程序。为了应对这些挑战,该团队确定了一种具有天然亲和力的LP菌株,该菌株对嗅觉粘膜是一种专门的组织,该组织位于鼻腔上部,负责嗅觉。该组织还为中枢神经系统提供了直接的途径,从而实现了鼻内药物的递送。然而,嗅觉粘膜的小表面积和人体对药物的快速清除率阻碍了鼻内药物向大脑的递送。为了解决此问题,团队设计了LP菌株以与N-乙酰基乙酰硫酸盐结合(NAHS,在嗅觉上皮中在细胞信号传导,结构支持和蛋白质相互作用中起重要作用的长糖分子链)。这种结合使药物的局部和持续释放,从而最大程度地减少了全身吸收并增强了大脑的生物利用度。工程的LP菌株能够产生食欲调节的激素,该团队用来证明这在治疗脑相关疾病方面具有潜力。在临床前研究中,修饰细菌的鼻内给药会导致食欲降低,体重下降,改善葡萄糖代谢和脂肪积累降低。在嗅觉粘膜上释放后,药物成功到达并积累了大脑。
小胶质细胞是负责维持正常神经发育所需的稳态条件的脑居民免疫细胞。小胶质细胞吞噬作用在开发的关键时期至关重要,以清除过度过度神经发生的结果,而小胶质细胞表达的生长因子提供了营养支持。小胶质活动可能与嗅觉系统具有特殊相关性,这对于长期的神经发生和免疫学威胁而言都是独特的。这项工作研究了小胶质细胞如何在产后早期发育期间嗅觉系统中的鼻迁移流(RMS)神经细胞迁移走廊中保持体内稳态状况。我们的发现说明了微神经胶质在促进环境中的重要性,该环境允许在RMS中进行有效的神经细胞迁移,并暗示着神经系统中其他地方的神经细胞迁移。
图 8.1 显示了灵长类动物大脑中的味觉和相关嗅觉、体感和视觉通路的示意图,图 8.2 显示了它们在大脑中的位置。灵长类动物的神经生理学研究为理解人类的味觉、嗅觉和风味处理和神经成像提供了基础,因为对单个神经元的调节的研究提供了关于这些刺激如何在不同大脑区域中编码的基本信息,使用稀疏分布的表示,其中每个神经元的调节方式都不同于其他神经元(Kadohisa 等人,2005 年;Rolls,2008a、2015a、2016a、2021a;Rolls 等人,2010a;Rolls 和 Treves,2011 年)。对非人类灵长类动物的研究尤其相关( Rolls, 2014a , 2015b , 2016b , 2021a ),因为灵长类动物的味觉通路通过丘脑到达味觉皮层,而啮齿动物的脑桥味觉区与皮层下有直接连接( Small and Scott, 2009 ; Rolls, 2016b , 2021a );在啮齿动物中,饱腹感的影响位于孤束核的外周( Rolls and Scott, 2003 ; Scott and Small, 2009 ; Rolls, 2016b );啮齿类动物没有灵长类动物的主要部分,包括人类的眶额皮质,颗粒状部分(Wise,2008;Rolls,2014a、2019b、2021a)(见图 8.3)。这使得啮齿类动物无法成为人类和其他灵长类动物大脑中味觉、嗅觉和风味处理的糟糕模型(Rolls,2016c、2021a)。
听觉:(音乐、自然声音、海洋、乐器) ________________________________________________________________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ 嗅觉:(花香、香水、饼干、篝火、乳液、蜡烛、精油) __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ 味觉:(最喜欢的食物、糖果、口香糖、热巧克力) __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ 触觉:(按摩、拥抱、柔软的毯子、宠物、石头、游泳、热水淋浴、梳头) __________________________________________________________________________________________________________ __________________________________________________________________________________________________________ __________________________________________________________________________________________________________
Vaidya和A.-c。 Romain,(2017年)使用电子鼻和化学分析仪的MSW气味定量:预测能力和健壮模型开发的相对探索,ISOCS/IEEE国际嗅觉和电子鼻子(ISOEN),蒙特利尔,QC,QC,加拿大,加拿大,1-3,1-3,
在昆虫中,气味受体有助于嗅觉通信,并需要33个高度保守的共受体基因Orco的功能。基因组编辑研究在几种蚂蚁和飞蛾34种中都表明,除了在果蝇中首先发现的典型的35在成人嗅觉中,Orco还可以具有神经发育功能,除了其规范35在成人嗅觉中的作用。为了扩展此分析,我们36确定了Orco突变是否还影响蜜蜂37 Apis Mellifera的成年大脑的发展,这是社会行为和化学交流的重要模型系统。我们38使用CRISPR/CAS9淘汰orco并检查解剖和分子后果。提高效率,我们将胚胎显微注射与实验室鸡蛋收集和40个体外饲养系统耦合。通过克服与现场研究相关的限制,这种新的工作流程在蜂蜜41蜜蜂中的基因组工程技术进步。我们使用Sanger测序对42个快速选择具有完整Orco敲除的个体进行神经解剖学分析,后来43个验证并用Amplicon测序描述了突变。突变蜜蜂的肾小球明显减少了44个较小的肾小球,较小的总肾小球体积和较高的平均肾小球体积。RNA测序表明,Orco敲除也46个在天线中引起数百个基因的差异表达,包括与47种神经发育和编码气味受体的基因有关的基因。在这项49项研究中,其他类型的48种化学感受器基因的表达通常不受影响,这反映了CRISPR活性的特异性。这些结果表明,Orco的神经发育效应与特定的昆虫50寿命有关。51