量子误差缓解 (QEM) 对于嘈杂的中型量子 (NISQ) 设备至关重要。虽然大多数传统的 QEM 方案都假设离散门电路,噪声出现在每个门之前或之后,但这些假设不适合描述可能具有强门依赖性和复杂非局部效应的实际噪声,以及模拟量子模拟器等通用计算模型。为了应对这些挑战,我们首先扩展了场景,其中每个计算过程(无论是数字还是模拟)都由连续时间演化描述。对于来自工程汉密尔顿量缺陷或额外噪声算子的噪声,我们表明它可以通过随机 QEM 方法有效抑制。由于我们的方法仅假设精确的单量子位控制,因此它适用于所有数字量子计算机和各种模拟模拟器。同时,可以利用理查森外推法来抑制缓解过程中的错误。当我们在能量松弛和失相噪声下使用各种哈密顿量以及具有额外双量子比特串扰的数字量子电路对我们的方法进行数值测试时,我们发现模拟精度提高了 2 个数量级。我们评估了我们方案的资源成本,并得出结论,使用 NISQ 设备进行精确量子计算是可行的。
摘要 — 捕获离子 (TI) 是构建嘈杂中型量子 (NISQ) 硬件的主要候选者。TI 量子比特与超导量子比特等其他技术相比具有根本优势,包括高量子比特质量、相干性和连通性。然而,当前的 TI 系统规模较小,只有 5-20 个量子比特,并且通常使用单个陷阱架构,这在可扩展性方面存在根本限制。为了向下一个重要里程碑 50-100 量子比特 TI 设备迈进,提出了一种称为量子电荷耦合器件 (QCCD) 的模块化架构。在基于 QCCD 的 TI 设备中,小陷阱通过离子穿梭连接。虽然已经展示了此类设备的基本硬件组件,但构建 50-100 量子比特系统具有挑战性,因为陷阱尺寸、通信拓扑和门实现的设计可能性范围很广,并且需要满足不同的应用资源要求。为了实现具有 50-100 个量子位的基于 QCCD 的 TI 系统,我们进行了广泛的应用驱动架构研究,评估了陷阱大小、通信拓扑和操作实现方法等关键设计选择。为了开展研究,我们构建了一个设计工具流,该工具流以 QCCD 架构的参数作为输入,以及一组应用程序和真实的硬件性能模型。我们的工具流将应用程序映射到目标设备上并模拟其执行以计算应用程序运行时间、可靠性和设备噪声率等指标。使用六个应用程序和几个硬件设计点,我们表明陷阱大小和通信拓扑选择可以将应用程序可靠性影响多达三个数量级。微架构门实现选择将可靠性影响另一个数量级。通过这些研究,我们提供了具体的建议来调整这些选择,以实现高度可靠和高性能的应用程序执行。随着业界和学术界努力构建具有 50-100 个量子比特的 TI 设备,我们的见解有可能在不久的将来影响 QC 硬件并加速实用 QC 系统的进程。
通过去极化噪声造成的一般量子统一操作员被复制并插入量子开关过程中,以实现因果阶的叠加。制定了所得开关的量子通道的表征,以便其在探针控制量子对的关节状态下的作用。然后,对开关通道进行了特定研究,以针对嘈杂的统一操作员的相位估计的重要层次任务,并由Fisher信息(经典或量子)评估。与常规估计技术进行了比较,其中直接在一个单阶段或两个阶段的级联中直接探测了具有定义阶的一个阶段或两个阶段的级联,或者使用两个或多个量子的使用它们的几种用途。在带有无限顺序的开关通道中,报告了特定属性,对于估计有意义,而不存在常规技术。表明,尽管它从未直接与统一相互作用,但仍可以单独测量它以进行有效的估计,同时丢弃与统一相互作用的探针Qubit。此外,对控制Qubit的测量还可以在常规估计变得不那么有效的情况下,在很难的条件下保持有效估计的可能性,例如,在不构成的输入探针或盲目情况下,当单位轴的轴时是盲目的情况。,即使输入探针倾向于与单一轴的轴或完全去极化的输入探针保持一致,在这些条件下,通过测量控制量轴的效率估计仍然是可能的,而在这些条件下,常规估计变得无效。还分析了开关通道的探针值的测量,并证明为相位估计增加了有用的功能。结果有助于对开关量子通道的性质和能力进行持续的识别和分析,并具有无限的订单,以进行信息处理,并发现了量子估计和Qubit Metrology的新可能性。
患有严重运动障碍(如脑瘫或闭锁综合征)的人通常通过具有单个开关输入的增强和替代通信 (AAC) 设备进行交流 [13、30、42]。用户可以通过按下按钮、释放一股空气或眨眼等方式控制开关的激活时间 [3、14、15]。最常见的是,这些开关激活(以下称为“点击”)用作扫描界面的输入 [52、54]。图形用户界面依次突出显示不同的选项;当开关被激活时,界面会选择突出显示的选项。但即使对于中等数量的选项,按顺序突出显示每个选项也可能是低效的。虽然一种称为行列扫描的流行变体效率更高,但它要求选项以网格排列。计算机用户经常需要在未排列在网格中的选项中进行选择;例如在绘图、游戏和网页浏览中。1
Boulby-FS(2020-21)概述:•社区主导的研究动机,背景和实用性研究了在英国创建一个主要的新深层地下科学设施•潜在项目的基础设施规范(Dark Matter,Neutminos&More)。•用于挖掘和装备实验室的概念设计(盐)(盐)和1.4公里(多层)层•人员配备和表面设施需求。•详细的成本和时间表。
使用量子物理学应用的语义和神经网络预测研究趋势,M。Krenn,A。Zeilinger,PNAS,PNAS 117(4)1910-1916(2020)
摘要生成随机数对于许多现实世界应用很重要,包括密码学,统计抽样和蒙特卡洛模拟。受测量的量子系统通过Born的规则产生随机结果,因此自然研究使用此类系统以生成高质量的随机数的可能性是很自然的。但是,当前的量子设备会受到错误和噪声的约束,这可能会使输出位偏离Uni-Form分布。在这项工作中,我们提出和分析两个方案,可用于增加带有Hadamard Gate的电路和嘈杂的量子计算机中的测量值时获得的位置的均匀性。这些协议可以在其他标准过程之前使用,例如随机性扩增。我们对量子模拟器和实际量子计算机进行实验,获得的结果表明,这些方案对于提高生成的局部的概率很有用,使其通过统计测试进行均匀性。
量子加密的嘈杂存储模型允许根据以下假设:作弊用户最多可以访问不完美,嘈杂的量子内存,而诚实的用户根本不需要量子存储器。通常,作弊用户的量子存储器越嘈杂,越来越安全的遗忘转移的实现,这是一个原始的,可以允许通用安全的两方和多方计算。对于遗忘转移的实验实现,必须考虑诚实用户所拥有的设备有损和嘈杂,并且需要应用错误校正以纠正这些可信赖的错误。后者有望降低协议的安全性,因为作弊用户可能会隐藏在可信赖的噪声中。在这里,我们利用熵的不确定性关系,以信任和不信任的噪声来获得关于遗忘转移的安全性的紧密界限。特别是,我们讨论具有独立且相关的噪声的嘈杂存储和有限存储。
在许多电磁兼容性(EMC)标准中描述了各种干扰环境,并且可能是在给定情况下可能会遇到的危害的有用资源。在产生,运输,消耗或(尤其是)切换的大量电力的环境中,可以在10 MHz以下产生大量噪声。可能发生这种情况的设置示例包括制造线,机械车间,空中,海上,道路和铁路车辆,发电,变电站和开关房间,仅举几例。用于自动化控制的SPE可能会在10 MHz以下遇到大量噪声。预期会遇到的干扰水平和频谱的细节自然取决于要部署系统的环境细节。但是,在EMC测试标准和建议中,耦合干扰与信号线的来源和机制的性质一次又一次地显示为常见主题。这些包括:
识别拓扑属性是一项重大挑战,因为根据定义,拓扑状态没有局部序参数。虽然目前还没有针对这一挑战的通用解决方案,但可以通过其纠缠谱中独特的简并性来识别一大类拓扑状态,即对称保护拓扑 (SPT) 状态。在这里,我们提出并实现了两个互补协议来探测这些简并性,分别基于对称解析纠缠熵和基于测量的计算算法。这两个协议将量子信息处理与物质 SPT 相的分类联系起来。它们调用集群状态的创建并在 IBM 量子计算机上实现。将实验结果与噪声模拟进行比较,使我们能够研究拓扑状态对扰动和噪声的稳定性。