众所周知,植物激素的生长素和细胞分裂素是植物生长和发育的关键调节剂,它们是在芽和根,幼叶,种子,种子和水果的顶端分生组织中合成的[1-4]。它们对种子发芽,芽的形成和生长以及植物阶段的植物的不定和侧根表现出刺激的影响[1-4]。植物生物学家的大量关注致力于筛选合成起源的生长素和细胞分裂素的新有效类似物,以改善农业的生长并提高农作物的生产率。近年来,已经创建了新的生长素和细胞分裂素的新合成类似物,例如NAA(1-萘乙酸),2,4-D(2,4-二氯苯氧基酸),3,4-D(3,4-二氯苯甲乙酸),2,4,4,4,5-T
食欲不振,恶心和呕吐是常见的不良反应,通常发生在治疗的第一周。这些不良反应可能会受到症状治疗,并且通常可以通过抗抑制剂来缓解。口腔炎通常是即将发生严重毒性的早期迹象,最早可能在第四天就变得明显,但更常见的是在治疗5-8天后出现。症状包括口腔或吞咽困难的酸痛,红斑或溃疡。其他报道的胃肠道症状是腹泻,脑炎和食管炎,因此,剂量可能需要调整或需要停止治疗。腹泻通常是轻度的,在治疗后以后发生。严重的腹泻也可能伴有脱水和Melaena。胃肠道副作用可能会加剧。
摘要。材料的腐蚀在各个行业构成了重大挑战,从而产生了重大的经济影响。在这种情况下,嘧啶化合物出现是有希望的,无毒的,具有成本效益和多功能腐蚀抑制剂的。然而,识别这种抑制剂的常规方法通常是时必时间的,昂贵的且劳动力密集的。应对这一挑战,我们的研究利用机器学习(ML)预测嘧啶化合物化合物腐蚀抑制效率(CIE)。使用定量结构 - 特性关系(QSPR)模型,我们比较了14个线性和12种非线性ML算法来识别CIE的最准确预测指标。装袋回归模型表现出卓越的性能,达到均方根误差(RMSE)为5.38,均方根误差(MSE)为28.93,平均绝对误差(MAE)为4.23,平均绝对百分比误差(MAPE)为0.05,以预测吡啶胺化合物的CIE值。这项研究标志着腐蚀科学的显着进步,提供了一种新型,有效的基于ML的方法,可替代传统的实验方法。它表明机器学习可以快速,准确地确定有机化学抑制剂(如嘧啶止材料腐蚀)的良好状态。这种方法为行业提供了一种新的观点和可行的解决方案,以解决已经存在的问题。
Tingting Fan 1,2Ɨ , Yanhao Cheng 3Ɨ , Yuechao Wu 4,5Ɨ , Shishi Liu 1Ɨ , Xu Tang 1,2Ɨ , Yao He 1 , Shanyue Liao 1 , Xuelian Zheng 1,2 ,Tao Zhang 4,5* , Yiping Qi 3,6* , Yong Zhang 2* 1 Department of Biotechnology, School of Life Sciences and Technology, Center for
基于互补氢键碱基配对的核酸高度复杂的分子识别能力导致了 DNA 纳米技术研究领域的迅猛发展。1 通过控制 DNA 杂交和结构以响应诸如 DNA/RNA 结合、pH 变化和光照射等刺激,已经创建了大量 DNA 纳米设备、传感器和分子机器。2 金属离子也可用作外部刺激来调节 DNA 结构和功能,特别是通过利用金属介导的非自然碱基配对。3 通过与桥接金属离子络合,两个相反的配体型核碱基类似物之间形成金属介导的人工碱基对。金属介导的碱基配对通常可以稳定 DNA 双链,从而以金属依赖的方式控制 DNA 杂交。为了通过金属络合有效地切换 DNA 功能,我们最近建立了一种新的概念,即双面 5-修饰嘧啶核碱基的金属介导碱基对切换。 4 – 7 双面碱基,如 5-羟基尿嘧啶 ( U OH ) 4,5 和 5-羧基尿嘧啶 ( caU ) 6 被设计成在金属介导的自碱基对 (例如, U OH – Gd III – U OH ) 中形成
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月5日发布。 https://doi.org/10.1101/2024.02.05.578390 doi:Biorxiv Preprint
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2023 年 11 月 25 日发布了此版本。;https://doi.org/10.1101/2023.11.24.568596 doi:bioRxiv 预印本
炎症是免疫系统对有害刺激(如病原体、受损细胞、有毒化合物或辐射)的反应 1,其特征是发红、肿胀、发热、疼痛和组织功能丧失。 2 如果长期持续,可能会变成慢性,从而导致组织损伤和细胞死亡,引起各种退行性 3 和神经退行性疾病。 4 据世界卫生组织称,慢性炎症是世界上最主要的死亡原因。 5 预计未来 30 年与慢性炎症相关的疾病将继续增加。在世界范围内,五分之三的人死于与慢性炎症相关的疾病,例如中风、慢性呼吸道疾病、心脏病、癌症、肥胖症和糖尿病。 6 – 8
结果和局限性:5hmc-sequesting的平均每样本读数为18.6(6.03至4243)的读数为98%(95-99%)可映射率。基线样本比较确定了20例进展患者和35例没有进展的患者的23,433个基因中的1,642个显着的5HMC差异(错误发现率,FDR <0.1)。进展的患者在多个标志性基因集中表现出明显的富集,并作为雄激素反应作为最大的富集基因集(FDR = 1.19E-13)。有趣的是,这种富集是由疾病进展的一组亚组驱动的,其基因组的5HMC高甲基化涉及AR,FOXA1和GRHL2。为了量化这些基因集的整体活性,我们使用整个基因集中基因读数的log2比率的平均值开发了一种基因集活性评分算法。我们发现,这些基因组中的活性得分在该亚组中的进展患者中明显高于其余患者,而不论进展状态如何。此外,这些基因集中的高活性评分与无进展的生存率差有关(p <0.05)。纵向分析表明,在3个月ADT后,该亚组中的活动得分显着降低,但在疾病进展后恢复了高水平。
胞嘧啶的甲基化是一种保守的表观遗传修饰,在调节甲基转移酶和去甲基酶的调节下,植物中甲基化的动态平衡。 近年来,DNA甲基化在调节动植物的生长和发展中的研究已成为研究的关键领域。 本综述描述了植物中DNA胞嘧啶甲基化的调节机制。 它总结了关于果实成熟,发育,衰老,植物高度,器官大小以及在园艺作物中生物和非生物胁迫下的果实成熟,发育,衰老,植物高度,器官大小的表观遗传修饰的研究。 审查为理解DNA甲基化机制及其与繁殖,遗传改善,研究,创新和剥削园艺作物的新品种的相关性提供了理论基础。胞嘧啶的甲基化是一种保守的表观遗传修饰,在调节甲基转移酶和去甲基酶的调节下,植物中甲基化的动态平衡。近年来,DNA甲基化在调节动植物的生长和发展中的研究已成为研究的关键领域。本综述描述了植物中DNA胞嘧啶甲基化的调节机制。它总结了关于果实成熟,发育,衰老,植物高度,器官大小以及在园艺作物中生物和非生物胁迫下的果实成熟,发育,衰老,植物高度,器官大小的表观遗传修饰的研究。审查为理解DNA甲基化机制及其与繁殖,遗传改善,研究,创新和剥削园艺作物的新品种的相关性提供了理论基础。