,如果我不突出我从东方加州理工学院的理论伪顾问Soonwon Choi突出显示。suonwon于2020年初开始与我们的团队合作,这个联盟一直非常富有成果,并且一直持续到今天。此外,我应归功于我与我分享了紧密合作伙伴关系的很快的学生。丹尼尔·马克(Daniel Mark)具有能够为我提出的任何问题提供答案,并能够从薄空气中发明理论证明和数值分析技术。他深厚的分析知识极大地提高了许多项目。Zhuo Chen是我对大约基准测试项目的不断伴侣,这是我博士学位最复杂的数量级。当我不断地欺骗他进行更多(和更大的)模拟时,他通过他的无与伦比的数字能力,他的奉献精神和耐心使他从字面上实现了整个工作。
摘要 - 计算机视觉是一项快速前进的技术,在很大程度上依赖相机传感器来为机器学习(ML)模型提供决策。已确认在各种未来派应用中发挥关键作用,例如自动驾驶汽车的进步,自动驾驶和目标跟踪无人机,停车援助和避免碰撞系统。但是,随着硬件级传感器黑客攻击的越来越多,即使是相机传感器也容易受到损害。本实验论文提出了使用电磁干扰(EMI)对机器计算机视觉(CV)进行机器学习能力的传感器黑客攻击的想法。开发了中端EMI入侵设备,以破坏计算机视觉系统的准确性和监督功能。评估研究了传感器黑客入侵对依赖实时饲料的障碍识别模型至关重要的摄像头传感器的影响,从而比较了有或没有传感器篡改的决策能力以评估整体效果。我们的结果表明,EMI显着影响相机传感器的性能,降低基于机器学习的对象检测系统的准确性和帧速率。这些发现强调了相机传感器对传感器黑客入侵的脆弱性,并突出了需要改进安全措施以保护计算机视觉系统中此类攻击的必要性。索引术语 - EMI,计算机视觉(CV),ML,自动驾驶车辆,避免碰撞
泌尿生殖器恶性肿瘤的抽象准确插入至关重要。尽管近年来这个分期已经大大提高,但仍然存在挑战。这项系统评价概述了现有的文献,内容涉及各种泌尿生殖器恶性肿瘤中FAPI-PET/CT的诊断价值。在Embase和Medline中进行了系统的搜索。随后的方法遵循首选的报告项目,以进行系统评价和荟萃分析(PRISM)指南。通过叙事综合纳入的研究和描述性统计数据来总结数据。在改编版的仪器的帮助下,对研究进行了严格的评估,以评估案例报告的质量评估。总共包括22项回顾性研究,这是各种泌尿生殖器恶性肿瘤中FAPI-PET/CT的诊断值
光子量子传感使用与光子学结合使用量子力学的原理来进行精确传感和检测。传统的光学方法在解决方案和准确性方面具有一些值得注意的局限性。然而,量子现象的应用,例如量子叠加和量子纠缠在光子上,可以使光子量子传感超过其效率。光子量子传感器设备有望超过传感器技术领域内的现有边界,尤其是在精度方面,通过利用量子力学的固有原理来超越精度。光子量子传感器设备的实际实现,在更广泛的传感器技术范围内的实际应用中,它们超出了理想的实验室条件,是量子传感器技术的下一步。考虑到这些事态发展,本期特刊会引起贡献,这些贡献会深入光子量子传感器的基本原理和实际应用。
这项工作对对抗机器学习领域中欺骗的反向工程(红色)进行了全面探索。它深入研究了机器和以人为中心的攻击的复杂性,从而使人们对如何对对抗性策略进行了整体理解,以保护AI系统。对于以机器为中心的攻击,我们涵盖了用于像素级扰动,对抗显着性图和受害者模型信息的反向工程方法。在以人为中心的域名的领域中,重点转移到生成的图像中的生成模型信息和操纵定位。通过这项工作,我们就与红色相关的挑战和机遇提供了前瞻性的看法。此外,我们在AI安全和值得信赖的计算机愿景领域提供了基础和实用的见解。
本文档中提供的信息对于指定的批号和分析日期有效。此信息仅用于参考目的,不构成产品适用于任何特定用途的保证或保证。Revvity,Inc。,其子公司和/或分支机构(统称为“ REVVITY”)对使用本文档或本文所述的产品造成的任何错误或损害均不承担任何责任。REVVITY明确否认所有保证,包括对特定目的的适销性或适用性的保证,无论口头还是书面,明示或暗示,据称是由于任何贸易或任何交易的用法而引起的,与此处包含的信息或产品本身有关。CLS760672-R REV01
摘要:实现SI上有效的片上光源是基于SI的光子集成电路(PICS)的关键。通过MOCVD(001)硅启用硅在硅启用的III-V材料(SOI)的III-V材料的选择性外观陷阱(LART)是一种有希望的技术,用于在硅和基于SI的PIC的硅的单层整合。在本报告中,通过LART Technique在行业标准(001)面向以行业标准(001)为导向的Soi Wafers上的GAAS膜的选择性生长获得了整体上的显微镜GAAS/SI平台。GAAS膜横向从{111}的面向氧化物沟渠内的{111}式的Si表面生长,其尺寸由光刻定义。GAAS微台面激光器(MDLS)在GAAS膜上通过光泵来在室温(001)SOI Lase上侧面生长的GAAS膜。rt脉冲激光以880μj/ cm 2的阈值实现。这项工作为完全集成的SI光子学提供了关键的步骤。■简介
量子相估计(QPE)是一种关键量子算法,已广泛研究它作为对未来易耐故障量子计算机进行化学和固态计算的方法。最近,几位作者提出了QPE的统计替代方法,这些替代方案对早期容忍设备有好处,包括较短的电路和更好的减轻误差技术的适用性。然而,缺乏对实际量子处理器算法的实验研究。在这里,我们对Rigetti超导处理器实施统计阶段估计。特别是,我们使用Lin和Tong [Prx Quantum 3,010318(2022)]算法的修改,并改善了Wan等人的傅立叶近似。[物理。修订版Lett。 129,030503(2022)]并应用一项变分兼容技术来减少电路深度。 然后,我们结合了减轻错误的策略,包括零噪声外推和减轻读数的读数和读数。 我们提出了一种从统计阶段估计数据中估算能量的新方法,发现相对于先前的理论界限,最终能量估计的准确性提高了1-2个数量级,从而降低了执行准确的相位估计计算的成本。 我们将这些方法应用于四个轨道中多达四个电子的活性空间的化学问题,包括应用量子嵌入方法,并使用它们在化学精度中正确估计能量。Lett。129,030503(2022)]并应用一项变分兼容技术来减少电路深度。然后,我们结合了减轻错误的策略,包括零噪声外推和减轻读数的读数和读数。我们提出了一种从统计阶段估计数据中估算能量的新方法,发现相对于先前的理论界限,最终能量估计的准确性提高了1-2个数量级,从而降低了执行准确的相位估计计算的成本。我们将这些方法应用于四个轨道中多达四个电子的活性空间的化学问题,包括应用量子嵌入方法,并使用它们在化学精度中正确估计能量。我们的工作表明,统计阶段估计具有自然的弹性,尤其是在缓解相干错误之后,并且可以达到比以前分析所建议的要高得多的准确性,这表明其作为早期耐故障设备的有价值的量子算法的潜力。
AKLT状态是各向同性量子Heisenberg Spin-1模型的基态。它表现出激发差距和指数衰减的相关函数,并在其边界处具有分数激发。到目前为止,仅通过捕获离子和光子系统实验实现了一维AKLT模型。在这项工作中,我们成功地准备了嘈杂的中间量子量子(NISQ)ERA量子设备上的AKLT状态。尤其是,我们在IBM量子处理器上开发了一种非确定性算法,其中AKLT状态制备所需的非单生操作员嵌入到单一操作员中,并为每对辅助旋转旋转1 /2的额外的Ancilla Qubit带有附加的Ancilla Qubit。这样的统一操作员有效地由由单量子和最近的邻居CX门组成的参数化电路表示。与Qiskit的常规操作员分解方法相结合,我们的方法导致了较浅的电路深度,仅邻近邻居的大门,而原始操作员的忠诚度超过99.99%。通过同时选择每个Ancilla Qubit,以使其属于旋转|↑>的子空间,可以通过从最初的单元状态以及量子计算机上的旋转量中的旋转量中的初始产品状态以及随后对所有其他物理量进行录制来系统地获得AKLT状态。我们展示了如何通过减轻读数错误的IBM量子专业人员进一步提高实施的准确性。