Allowed values for .spec.version during migration 9.3.0.0-r1, 9.3.0.0-r2, 9.3.0.0-r3, 9.3.0.1-r1, 9.3.0.1-r2, 9.3.0.1-r3, 9.3.0.1-r4, 9.3.0.3-r1, 9.3.0.4- r1, 9.3.0.4-r2, 9.3.0.5-r1, 9.3.0.5-r2, 9.3.0.5-r3, 9.3.0.6-r1, 9.3.0.10-r1, 9.3.0.10-r2, 9.3.0.11-r1, 9.3.0.11-r2, 9.3.0.15-r1, 9.3.0.16-r1, 9.3.0.16-r2, 9.3.0.17-r1, 9.3.0.17-r2, 9.3.0.17-r3, 9.3.0.20-r1, 9.3.0.20-r2, 9.3.0.21-r1, 9.3.0.21-r2, 9.3.0.21-r3, 9.3.0.25-r1, 9.3.1.0-r1, 9.3.1.0-r2, 9.3.1.0-r3, 9.3.1.1-r1, 9.3.2.0-r1, 9.3.2.0-r2,9.3.2.1-r1,9.3.2.1-r2,9.3.3.0-r1,9.3.3.3.0-r2,9.3.3.1-r1,9.3.3.3.1-r2,9.3.3.33.2-r1,9.3.3.3.2-r2,9.3.33.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.granial 9.3.5.0-r2, 9.3.5.1-r1, 9.3.5.1-r2, 9.4.0.0-r1, 9.4.0.0-r2, 9.4.0.0-r3, 9.4.0.5-r1, 9.4.0.5-r2, 9.4.0.6-r1, 9.4.0.6-r2, 9.4.0.7-r1, 9.4.0.10-r1, 9.4.1.0-r1, 9.4.1.0-r2,9.4.1.1-r1
。但是,裁定设备操作的物理和化学裁定仍未完全揭示。在这项工作中,目的是阐明设备观察到的灵敏度的性质。朝着这个目标,一个物理化学模型,再加上RGO-EGT的实验表征,可以定量地将栅极电极处的生物认知事件与RGO-EGT的电子特性相关联。显示出在栅极电极处发生的生物识别的平衡,以确定RGO通道的表观电荷中性点(CNP)。RGO-EGT实验传递特性的多参数分析表明,识别事件调节CNP电压,过量的载体密度n n和RGO的量子电容。该分析还解释了为什么孔和电子载体迁移率,界面电容,转移曲线的曲率和跨导性对目标浓度不敏感。对生物识别事件晶体管转导的机制的理解是解释RGO-EGT免疫传感器响应的关键,并指导新颖和更敏感的设备的设计。
细丝缠绕复合压力容器(CPV)主要用于气体或流体储存。复合容器受到严格的条件,例如临界载荷,极端温度和爆发;因此,对于船舶结构完整性的永久性原位和在线监测方法至关重要。因此,本评论的论文重点介绍了最流行的传感器(例如Piezoeelectric(PZT和PVDF),Piezoresistive(BP和MXENE)以及光纤(SOFO®,OBR和FBG)传感器,以开发出一种结构性健康监测(SHM)来创建自我增压压力容器。本评论论文的新颖性在于提供概述现有作品的概述,涵盖了复合容器中传感器的整合,包括传感器类型,本地化及其对复合完整性的影响。尤其是对传感器集成,尤其是其受监控参数,布局设计和CPV中的布置的分析。此外,分析了宿主复合材料和传感器之间的相互作用,以了解如何将传感器与改变复合容器机械性能的最小缺陷整合。最后,对CPV的SHM系统进行了讨论,为研究人员提供了即将进行的实验工作的基础。
工程纳米材料的出现已为包括医疗保健,工程,制造业,航空航天,建筑,汽车和其他包括医疗保健,工程,制造业,航空航天等新型应用打开了大门。纳米材料的较大表面体积比非常适合靶向功能和感应。化学传感器和生物传感器的特异性和灵敏度可以通过工程纳米材料形状,大小,组成和表面化学的变化来定制。纳米材料生物传感器在医疗保健诊断,食物新鲜度和生物处理等领域都有应用。属于此类别的材料,包括金属,金属氧化物,碳纳米管,2D材料,聚合物,蛋白质或纳米复合材料,可以具有多种组成。化学传感器可用于检测气体和液体,以应用环境保护,工业自动化和安全性。本期特刊涵盖了此类材料的各个方面,从解释材料的工作原理的理论考虑到其综合,表征和应用。
1。简介拉斯托尼亚物种是机会主义的,可以在自来水,工业水分配系统和实验室纯净水系统等各种水源中生存和生长的水传播生物[1]。因此,这些微生物可能会污染用于患者护理的溶液,例如盐水溶液,静脉药,蒸馏水或呼吸溶液[2-4]。这些溶液的污染可能会引起侵袭性感染的爆发,例如血液感染(BSIS),骨髓炎和脑膜炎[5]。最常见的Ralstonia物种是Ralstonia Pickettii [6]。然而,Ralstonia Mannitolilytica,Ralstonia solanacearum和Ralstonia insidiosa也可能引起人类感染。R。Insidiosa是与Pickettii [7]最紧密相关的细菌,可能会因污染溶液而导致医院爆发。本研究提出了由R. insidiosa引起的菌血症爆发,这与我们医院的肝素化血液注射器有关。
不连贯的激光脉冲的自我形成似乎是自相矛盾的,既涉及强大的不稳定性和时间定位过程。不一致的脉冲状态在超快激光动力学中均经常出现。在本文中,我们通过实时录制不同的腔体分散液体下的不一致的脉冲动力学来带来决定性的实验数据。我们的测量值强调了发挥作用的不同主导机制。虽然孤子脉冲塑形有助于在异常分散体中创建一堆混乱的脉冲,而正常分散体状态下的不一致的脉冲遵循强烈的湍流耗散动力学。数值模拟在定性上很好地重现了观察到的动力学的最终堆积阶段。通过显示共同的动力学特征和差异,这些结果支持了不一致的耗散孤子的一般概念的发展。
牙菌菌生物膜内链球菌与白色链球菌之间的生态相互作用是驱动龋齿发病机理的重要因素。这项研究旨在调查s。mutans c。白色疾病的生长和通过细胞外膜囊泡(EMV)和泛素化调节(一种关键蛋白转化后修饰)的调节。我们建立了一个Transwell共培养模型,以实现s之间的“联系 - 独立”相互作用。mutans and c。白色唱片。s。mutans eMV与c直接关联。白色念珠菌细胞并促进生物膜的形成和生长。Quantertative泛素化分析显示了s。Mutans极大地改变了c。白色唱片。我们确定了整个c的10,661个泛素化位点。白色唱片蛋白质组及其在与翻译,代谢和应激适应性相关的途径中的富集。与s共同培养。突变导致对糖分解代谢和减少功率产生的398种蛋白质上的泛素化上调。s。mutans上调了c的超氧化物歧化酶3。白色念珠菌,诱导其降解和高度增强的活性氧水平,并同时刺激c。白色唱片的生长。我们的发现阐明了EMV和泛素化调制,作为控制s的关键机制。mutans-c。白色唱片相互作用,并为促进性口服生物膜环境提供新的见解。这项研究显着提高了对牙齿斑块营养不良和龋齿发病机理基础的复杂分子相互作用的理解。
别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
1个微生物部,北都会canyet,s/n, (B.R.); helline.forday @sib.es(E.J.-L。); (C.C.); (V.G.); ; (L.M.)山谷的Cerdanyola是西班牙3 UMR chloe.le-roy@u-bordeaux.fr(C.L.R.); (C.B. <.b。); (S.P.)4西班牙巴达罗纳(Cibersp),Avda。BORDEAUX的细菌学家部,法国波尔多F-33000西班牙奥维耶多33011中央大学医院。感染组,西班牙马洛卡的07120棕榈。