M. L. Drechsler,M。Lorke,F。Jahnke理论物理研究所,不来梅大学,Otto-Hahn-Allee 1,28359 Bremen,德国,德国电子邮件:mon dre@uni-bremen.de l. S.-M. Choi,F。Nippert,A。Koulas-Simos,S。Reitzenstein固态物理研究所,柏林技术大学,Hardenbergstr。 36,10623柏林,Ger-许多电子邮件:luca.choi@physik.tu-berlin.de; felix@physik.tu-berlin.de; aris.koulas-simos@tu-berlin.de; stephan.reitzenstei berlin.de; M. R. Wagner Paul-Drude-Institut,用于节日个人电子电子产品,莱布尼兹研究所柏林E.V.,Hausvogteiplatz研究协会,Hausvogteiplatz 5-7,10117柏林,德国固体州立物理研究所,柏林技术大学,柏林,Hardenbergstr。 36,10623柏林,播放:wagner@pdi-berlin.de F. F. Tabataba-vakili物理学学院,慕尼黑量子量子中心和纳米科学中心和卢德维格 - 米克斯米尔人 - 马克西米利人 - 穆特尼亚人 - 穆特·穆特·穆纳奇(Ludwig-Maximilians-universitötmünchen) (MCQST),Schellingstraße4,80799慕尼黑,Germation:f.tabataba@lmu.de B. Alloing,P。BoucaudUniversit´e Cˆote d'Azur d'Azur,CNRS,CNRS,CNRS,CRHEA,CRHEA,RUE BERNARD GR'EGORY,RUE BERNARD GR'EGORY,0690555555555555555550505 SOPHIA-SOPHIA-SOPHIA-ASSHIAIPOLIS,FIMASTIPOLIS,FIMASSIPOLIS,FIMASS:: blandine.alloing@crhea.cnrs.fr; philippe.boucaud@crhea.cnrs.frM. L. Drechsler,M。Lorke,F。Jahnke理论物理研究所,不来梅大学,Otto-Hahn-Allee 1,28359 Bremen,德国,德国电子邮件:mon dre@uni-bremen.de l. S.-M. Choi,F。Nippert,A。Koulas-Simos,S。Reitzenstein固态物理研究所,柏林技术大学,Hardenbergstr。36,10623柏林,Ger-许多电子邮件:luca.choi@physik.tu-berlin.de; felix@physik.tu-berlin.de; aris.koulas-simos@tu-berlin.de; stephan.reitzenstei berlin.de; M. R. Wagner Paul-Drude-Institut,用于节日个人电子电子产品,莱布尼兹研究所柏林E.V.,Hausvogteiplatz研究协会,Hausvogteiplatz 5-7,10117柏林,德国固体州立物理研究所,柏林技术大学,柏林,Hardenbergstr。36,10623柏林,播放:wagner@pdi-berlin.de F. F. Tabataba-vakili物理学学院,慕尼黑量子量子中心和纳米科学中心和卢德维格 - 米克斯米尔人 - 马克西米利人 - 穆特尼亚人 - 穆特·穆特·穆纳奇(Ludwig-Maximilians-universitötmünchen) (MCQST),Schellingstraße4,80799慕尼黑,Germation:f.tabataba@lmu.de B. Alloing,P。BoucaudUniversit´e Cˆote d'Azur d'Azur,CNRS,CNRS,CNRS,CRHEA,CRHEA,RUE BERNARD GR'EGORY,RUE BERNARD GR'EGORY,0690555555555555555550505 SOPHIA-SOPHIA-SOPHIA-ASSHIAIPOLIS,FIMASTIPOLIS,FIMASSIPOLIS,FIMASS:: blandine.alloing@crhea.cnrs.fr; philippe.boucaud@crhea.cnrs.fr
$ k65)。 (46/(+ $ 0+!。(&0&8&)“+1/(6”&#6/86:+1/b&)/+1/'“#$%&'$(!。(&0&8&)“+ 1/(6“”&#6/86+ o!1p+ a)'+ B.)4)(&8)“ G+(。/'0 $ .46B+ s)。 &$ - '+ '68($。':+ 6/a)/86b+ b68&'&$/u 4)i&/#+ 5。 $ 86'6 '+)/B+)-($ 4) (&/#+8 $ 45 "6t+()' i'j+k6'5 & (6+& ('+5 $ (6/(&)"+F6/60 & (':+(A6+B65 "$ G46/(+$ 0+ 4) 8A &/6+"6) ./&/#+)"#$. & (A4 '+a)'+)&'6b+'&#/&0&0&8)/(+8 $/86 ./'+6#)。 b&#+f&)'+)/b+b&'8。&/)(&$/j+@a&'+5)56。+b6“ s6'+&/($+($ 4-”(a6+4-“(&0)86(6b+$。&#&#&/'+$ 0+$ 0+$ 0+$ f&+f&+&/+!1+&b)++a+a+a+a+a+a+a+'; h+(a6'6+。)4)/&06'(+&/+6)“ uh $。“ b+)55”&8)(&$/'+)/b+(a6&。+&45“&8)&8)(&$/'+0 $。+'$ 8&6()”+6v-&(gj+wg+)/)“ gl&/#+8)'gl&/#+8) &/'x'-8a+)'+a6)a&#a”&#a('+(a6+b6(a6+b6((a6.4 $ .6:+(a6+ 5)56。+ 5。$ 5 $'6'6'+)8(&$/)f“ 6+'(。)(6#&6'+ 0 $。+ 4&(&#)(&/#+ f&)':+&/8“ -b&/#+ b&s6。'6+ b)()+8 $“” 68(&$/:+)“#$。&(a4&8+) - b&/#:+)/b+(a6+6'()'6+)。 $ - /b+! 1:+(a&'+ 5)56。+ 645a)'&l6'+(a6+ 8。&(8)“+/66b+ 0 $。+ 6(a&8)(a&8)”+ 8 $/'&b6。)(&$/':+&/8“ - '&s&(g:+)/b+(。/'5).6/8G+&/+(A6+B6S6“ $ 546/(+)/B+B65” $ G46/(+$ 0+4)8a&/6+“ 6)./&&&&&&&&&&&&&&&&&&&&&#&#” $'(6。+)+4 $ .6+6v-&()f“ 6+!1+”)/b'8)56+(a)(+'6.s6'+)“”+464f6。“ gj + +!“#$%&'() +!“#$%$&$'() *+#,(($ - ,+&,。)/'&0 $+,)1,'“+$+ - 。)< /div>2 $'3.)4 $ 3&“ $ 5 $+'#$ 6+)4'#')2 $'3.)(-6“ $#05 $&)2 $'> 6(&$ 6+。)a,“ a6($&&&&&$&$&$&$+。)8C:$#<)++)!*。)!*)80 $&3。)d“'so,+&6:+#'f $($#<。)'+=)?#
从环境和经济角度来看,废水处理一直是大都市的主要问题之一。最常见和最有效的厌氧处理需要花费大量成本。同时,厌氧废水处理允许使用其产品之一沼气作为能量载体来进行该过程。然而,尽管厌氧技术具有许多额外的优点,例如无臭味和可以使用稳定污泥作为肥料,但它的特点是生产率低。通过引入固定微生物群的厌氧生物反应器解决了这个问题。许多国家都在积极推进这一领域的发展,但其成果很难系统化。厌氧废水处理工艺在很大程度上取决于废水的特性和生物反应器的设计,因此要证实该工艺的理论研究,必须通过实验进行验证。通过分析与惰性介质厌氧废水处理过程研究相关的已发表著作,我们可以确定主要的发展领域: - 使用底物和某些类型的微生物; - 在一个或多个厌氧生物反应器中进行该过程; - 使用各种介质; - 研究温度的影响 处理技术中的一个重要领域是通过向废水中添加化合物来改性底物本身,以提高处理质量 [1-3]。
量子光力学的大多数研究都集中在单个振荡器上,展示了基态冷却和量子压缩等量子现象。但集体量子行为并非如此,其中许多振荡器作为一个整体运行。虽然这些集体动力学是创建更强大的量子系统的关键,但它们需要对具有几乎相同特性的多个振荡器进行极其精确的控制。
摘要 混沌系统具有复杂且不可再现的动力学,在自然界中随处可见,从行星之间的相互作用到天气的演变,但也可以使用当前的先进信号处理技术进行定制。然而,由于底层物理涉及动力学,混沌信号发生器的实现仍然具有挑战性。在本文中,我们通过实验和数值方法提出了一种从微机械谐振器生成混沌信号的颠覆性方法。该技术通过调节施加到非线性区域中谐振器的驱动力的幅度或频率,克服了控制微/纳米机械结构中屈曲的长期复杂性。混沌状态的实验特征参数,即庞加莱截面和李雅普诺夫指数,可直接与不同配置的模拟进行比较。这些结果证实,这种动态方法可转换到任何类型的微/纳米机械谐振器,从加速度计到麦克风。我们通过将现成的微隔膜转变为符合美国国家标准与技术研究所规范的真正随机数生成器,展示了利用混沌状态的混合特性的直接应用。这种原始方法的多功能性开辟了新的途径,将混沌的独特性质与微结构的卓越灵敏度相结合,从而产生新兴的微系统。
至少12个理论课程和第二年的4个LR,(b)在前四个课程中始终保持最低CGPA为8.5,(c)在随后的所有4个课程中保持最低CGPA为8.5,不包括荣誉课程,(D)成功完成其他课程(包括M. Tech。课程,必须与PC和PE课程更高,并且在B.Tech中列为荣誉课程。(ICE)课程,总计至少15个学分(例如,4个学分课程和1个学分的3个学分数量),以及(e)在荣誉课程中至少达到B级。荣誉课程不能被视为课程选修课,而这些课程的成绩不能归入CGPA计算。5。获得较小的学位(除了常规的研究流/分支外),学生
封装在介孔碳 (MC) 中的 Al 掺杂磁铁矿尖晶石纳米粒子被认为是一种有前途的非均相 Fenton 催化剂,可用于实际应用中的连续苯酚降解。在固定床反应器内的工作条件下,制备的 21%γ-Fe 2 O 3 /28%FeAl 2 O 4 @MC 材料中的铁铝尖晶石与 H 2 O 2 发生反应。在该反应中,Al 离子占据了 γ-Fe2O3 组分框架中的空八面体阳离子位,将其转化为 Al 取代的磁铁矿尖晶石。获得的 Fe 3+ 0.66 Fe 2+ 0.33 (Fe 2+ 0.33 Fe 3+ 0.33 Al 3+ 0.33 ) 2 O 4 @MC 中的 Al 通过其路易斯酸特性使铁离子的电子极化,从而使铁离子 (Fe n+(δ+) ) 带上更多的正电荷。这加快了具有挑战性的还原反应 Fe 3+ → Fe 2+ 与 H 2 O 2 生成 HOO˙ 的速度,并加强了尖晶石中铁离子的键合,提高了它们的活性和稳定性。因此,在温和的操作条件下(pH5、40°C、8.6 mlwater/mlcat*h、0.036mol H 2 O 2、200ppm 苯酚),原位生成的催化剂 Fe(Fe 0.66 Al 0.33 ) 2 O 4 @MC 为 35 nm,含有 19.9%Fe 和 2.4%Al,表面积为 335 m 2 /g,在 500 小时的运行中表现出持久的高催化活性和稳定性。在催化性能没有明显变化的情况下,获得了 80% 的 TOC 转化率和处理水中约 1ppm 的浸出 Fe。
信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
微型真空电弧推力器是微型和纳米卫星上推进系统的候选系统之一。它们具有多种优势,例如比冲高、使用密度高、体积小的固体推进剂而不必使用储罐和压力系统,以及包含电子和离子的等离子体膨胀而不必使用中和阴极。多电荷离子的出现是解释离子以极高速度存在的原因之一。本文重点介绍了真空电弧推力器的简化一维模型,考虑了真空电弧推力器典型条件下阴极表面的电子和原子发射以及极间气体的分解。对于钛阴极材料,结果表明,逐步电离是理解真空电弧条件下观察到的高等离子体的关键因素。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
