Kudan Inc. (headquarters in Shibuya-ku, Tokyo; CEO Daiu Ko) is thrilled to announce that Fox Sports Productions, LLC (headquarters in Los Angeles, USA; CEO Eric Shanks, hereafter “FOX Sports”) has decided to commercially launch its augmented reality (AR) broadcasts robot camera to redefine AR experiences in live sports broadcasting.这项合作将在即将到来的超级碗Lix上首次亮相,Kudan的专利高频3D LIDAR大满贯跟踪软件将为下一代AR增强功能提供动力,为沉浸式体育娱乐活动提供前所未有的观看体验。1。产品发布和协作的详细信息Kudan的实时大满贯技术可以实现超专业的3D空间跟踪,而无需依赖外部定位系统,从而在现场体育中为AR解释了新的可能性。通过将这项技术集成到SkyCam的计算机控制,稳定,有线电视摄像机系统和Fox Sports的广播工作流程中,Kudan将赋予实时AR图形和视觉增强功能,这些图形和视觉增强功能无缝固定在游戏动力学上。
●4D:表现出对歧义,毅力和开放式问题工作能力的容忍度。●5A:制定适合技术辅助方法的问题定义,例如数据分析,摘要模型和算法思维,以探索和查找解决方案。●5C:将问题分解为组件部分,提取关键信息,并开发描述性模型以了解复杂的系统或促进解决问题。●6C:通过创建或使用各种数字对象(例如可视化,模型或仿真)来清晰有效地传达复杂的想法。●7C:为项目团队做出建设性的贡献,承担各种角色和责任,以有效朝着共同的目标努力。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
摘要这项研究调查了Ubuntu哲学与撒哈拉亚州非洲的AI驱动新闻实践的融合。特别关注其挑战,机遇和对提高包容性的影响,该研究描述了实际的询问行为,包括优先考虑多样化的数据源,建立道德准则,促进AI素养,确保透明度和问责制,并分配公平的资源。借鉴了刚果DRC,肯尼亚,坦桑尼亚,乌干达和赞比亚的记者的观点,发现非洲记者在与人工智能工具的互动中遇到了各种经验,从热情的拥抱到对他们的重视能力和代表性和代表性。在背景下,该研究提出了一种受Ubuntu哲学启发的规范视角,强调了关系,社会进步,社会和谐和人类尊严,是负责在新闻业中使用AI的指导框架。通过在Ubuntu哲学中重新构想AI新闻业,该研究强调了创造一种技术性景观的潜力,在该景观中,所有个人和社区都得到公平地对待,与相互联系的NESS,社区责任和集体福祉的原则保持一致。
在快速技术进化的背景下,药房正面临着越来越多的挑战,这是由于19号大流行而加剧的。为了应对这些挑战,我们的项目建议使用机器人和人工智能系统对药房进行现代化化。这些技术允许自动化各种任务,例如销售,监视和数据输入,从而减少了人类的努力并最大程度地减少错误。该项目依赖于高级技术,例如光学特征识别(OCR),用于阅读处方,数据库搜索以定位药物以及药物收集和付款的自动化。添加的值包括使用屏幕作为广告空间,通过连接的平台管理投诉以及常规的库存监控。此外,将集成药房助理机器人,以帮助日常任务管理和客户互动。总而言之,该项目从根本上通过结合技术创新和人工智能来改变药房运营,从而提高效率和服务质量。关键字:智能药房,人工智能,机器人技术,药房自动化,OCR
本丛书涵盖了广义上运用知识和智能的系统和范例。其范围是具有嵌入式知识和智能的系统,这些系统可应用于解决工业、环境和社会中的世界问题。它还侧重于有效实现这一目标的知识转移方法和创新战略。智能系统工具和广泛应用的结合需要科学、技术、商业和人文学科的协同作用。本丛书将包括会议论文集、编辑合集、专著、手册、参考书和其他相关类型的书籍,涉及智能系统和技术可以提供创新解决方案的科学和技术领域。
在这项工作中,我们提出了一种用于人形 iCub 机器人头部姿势估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片 Loihi 中完全实现,并精确整合发出的运动命令,以在神经路径整合过程中估计 iCub 的头部姿势。iCub 的神经形态视觉系统用于校正姿势估计中的漂移。机器人前方物体的位置使用片上突触可塑性来记忆。我们使用机器人头部的 2 个自由度 (DoF) 进行实时机器人实验,并展示精确的路径整合、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。
事实上,机器人用户的判断更准确,但总体而言,看到机器人的人的判断不太准确,这可能是由于使用机器人的好处,但也可能是由于自我选择;使用聊天机器人的人的类型即使没有机器人也可能更准确(例如,非常投入的参与者)。
摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE
摘要 - 计算机视觉和深度学习方面的进步导致人们对Ai-Art的领域的兴趣激增,包括数字图像创建和机器人辅助绘画。传统的绘画机依靠静态图像和offl ine处理来将视觉反馈纳入其绘画过程中。但是,这种方法并未考虑绘画的动态性质,并且无法将复杂的重叠模式分解为单个笔触。作为基于框架的RGB摄像机的替代方法,神经形态摄像机通过异步事件流捕获场景中光强度的变化,有望克服传统计算机视觉技术的某些固有局限性。在此项目中,提出了一种用于物理绘画的机器人系统,该系统利用了动态视觉传感器(DVS)摄像机的基于事件的视觉输入。为了利用摄像机的超低潜伏期和稀疏编码,该建议的系统还采用了基于事件的信息处理,并在神经形态Dynapse-1处理器上使用尖峰神经网络实现。机器人系统接收DVS感官数据,它代表了笔触的轨迹,并计算了所需的关节速度,以闭环方式用6多F的机器人臂重新创建中风。控制器还将触觉反馈从力量扭转传感器集成在一起,以动态调整末端exector的距离,这取决于刷子的变形。在项目范围内,进一步证明了如何从DVS数据中提取有关感知的笔触中风的速度信息。该系统在现实世界中进行了测试,并成功生成了物理笔触的集合。提出的网络是迈向完全尖峰的机器人控制器的第一步,能够无缝融合基于事件的感觉反馈,从而提供超低潜伏期响应能力。除了在机器人辅助绘画中的实用性之外,开发的网络还适用于需要实时自适应控制的任何机器人任务。