概述:构成机器人规划,州估计和控制的基础的算法简介。主题包括优化,运动计划,不确定性表示,卡尔曼和粒子过滤器以及点云处理。作业专注于编程机器人在模拟中执行任务。
摘要本文介绍了Hanooman,这是一种生成的AI和大型语言模型聊天机器人,其灵感来自Hindu Geity Lord Hanuman。Hanooman旨在体现力量,敏捷性和奉献精神的素质,利用尖端的语言处理能力,为用户提供信息丰富且引人入胜的对话。我们探索了哈诺曼的概念框架,架构和培训程序,展示了其在各个领域的潜在应用。我们的评估结果表明,在响应准确性和上下文理解方面,Hanooman优于现有的聊天机器人,使其成为自然语言处理和人类计算机互动的有前途的工具。大语言模型(LLM)和生成AI是人工智能的重大进步,彻底改变了我们与技术的互动,生成内容和理解人类语言的方式。llms,在大量数据集中受过培训,在语言翻译,文本摘要,问题答案和创意写作等任务中表现出色。生成的AI(AI的一个子集)会产生自主输出,通常表现出惊人的创造力和连贯性。印度亿万富翁穆克什·安巴尼(Mukesh Ambani)与IIT孟买和其他八个印度技术学院合作,加入了AI竞赛,以推出“ Hanooman”,这是一集,该集合以22种印度语言培训了大型语言模型。关键字:哈诺曼,大语言模型,人工智能,生成AI1。简介
摘要 - 计算机视觉和深度学习方面的进步导致人们对Ai-Art的领域的兴趣激增,包括数字图像创建和机器人辅助绘画。传统的绘画机依靠静态图像和offl ine处理来将视觉反馈纳入其绘画过程中。但是,这种方法并未考虑绘画的动态性质,并且无法将复杂的重叠模式分解为单个笔触。作为基于框架的RGB摄像机的替代方法,神经形态摄像机通过异步事件流捕获场景中光强度的变化,有望克服传统计算机视觉技术的某些固有局限性。在此项目中,提出了一种用于物理绘画的机器人系统,该系统利用了动态视觉传感器(DVS)摄像机的基于事件的视觉输入。为了利用摄像机的超低潜伏期和稀疏编码,该建议的系统还采用了基于事件的信息处理,并在神经形态Dynapse-1处理器上使用尖峰神经网络实现。机器人系统接收DVS感官数据,它代表了笔触的轨迹,并计算了所需的关节速度,以闭环方式用6多F的机器人臂重新创建中风。控制器还将触觉反馈从力量扭转传感器集成在一起,以动态调整末端exector的距离,这取决于刷子的变形。在项目范围内,进一步证明了如何从DVS数据中提取有关感知的笔触中风的速度信息。该系统在现实世界中进行了测试,并成功生成了物理笔触的集合。提出的网络是迈向完全尖峰的机器人控制器的第一步,能够无缝融合基于事件的感觉反馈,从而提供超低潜伏期响应能力。除了在机器人辅助绘画中的实用性之外,开发的网络还适用于需要实时自适应控制的任何机器人任务。
摘要 - 金属制造过程的未来,例如激光切割,焊接和添加剂制造,应依赖于行业4.0支头的智能系统。这样的数字创新确实正在推动机械制造商进行深刻的转变。是根据针对特定过程设计和优化的定制机器,雄心勃勃是利用开放性和大量的工业机器人可用性,以提高多流程实现的灵活性和可重新配置。挑战在于,机械构建者将自己转变为高知名度专业的过程驱动的机器人集成器,能够用智能传感和认知方面的过程控制器杠杆优化机器人运动。这项工作描述了BLM集团和Politecnico di Milano的多年合作,在CNR的支持下,重点是部署完整的机器人工作站,其特征是机器人控制和运动计划与制造过程的完整整合。索引术语 - 指导的能量沉积,激光金属拆卸,添加剂制造的设计,CAD/CAM
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
任何广告区域。有资格获得7.5 CGPA的任何地方,可以放松OBC的标准(NCL):7.0 CGPA&SC/ST/ST/PWD:6.5 CGPA。●对于每个专业和计划,候选人应提交申请费的单独申请。●主管当局在与候选人资格,访谈和入学条件有关的所有事项中的决定将是最终的,并且对所有候选人具有约束力。如果在入学过程中可能发生任何争议/歧义,则该研究所的决定应为最终决定●在线申请中提供的所有详细信息将被视为最终,并且不会进行任何更改。不提交有效/必需的文件和/或不完整的申请应立即拒绝。
摘要:由于食物的复杂状态和多样化的物理特性,有效地挖出食品对当前机器人系统构成了重大挑战。为了应对这一挑战,我们相信将食品编码为有意义的有效食品的重要性。然而,食品的独特特性,包括可变形,脆弱性,流动性或粒度,对现有表示构成了重大挑战。在本文中,我们以隐式方式提出了积极感知来学习有意义的食物代表的潜力。为此,我们提出了Scone,这是一个食品搜索机器人学习框架,利用从积极的掌握中获得的表示形式来促进食品可铲政策学习。Scone包括两个Crucial编码组件:交互式编码器和状态检索模式。通过编码过程,Scone能够捕获食品的特性和重要的状态特征。在我们的现实世界中的实验中,Scone在三种不同的难度水平上使用6种以前看不见的食品时,成功率具有71%的成功率,超过了最先进的方法。这种增强的性能强调了Scone的稳定性,因为所有食品始终达到超过50%的任务成功率。此外,Scone可容纳各种初始状态的令人印象深刻的能力使其能够精确评估食物的当前状况,从而导致了令人信服的成功率。有关更多信息,请访问我们的网站。
1简介自主控制算法的设计是一项艰巨的任务,因为它传统上需要大量的现实测试,这既耗时又昂贵。仿真是自治设计的宝贵工具,例如,以时间和成本效益的方式协助参数调整,算法测试。此外,在机器学习范围(ML)的范围内,由于其生成训练数据的能力,模拟具有吸引力。在此,我们证明了模拟引擎[1]和自治研究床(ART)[2]平台来促进自治政策制定过程,以避免ML控制政策。这项工作建立了以前的贡献,这些贡献证明了控制策略的各种多速路径的可传递性[3,4]。这项研究证明了通过机器学习(ML)避免障碍物的额外能力。ML已通过收集的数据进行了培训,而人类驾驶员则在模拟器中驱动。
本课程为机器人探索以及AI驱动的映射和采样技术提供了全面的介绍,该技术量身定制,用于太空探索和地球观察。学生将在计算机视觉,同时本地化和映射(SLAM),多机器人协调以及使用高级AI工具在极端环境中运营等关键领域获得专业知识。课程强调现实世界的实施,将讲座与动手项目结合使用移动性自主系统,包括自主地面,空中和水生机器人作为数字双胞胎可用的以及在梦境实验室中的物理。该课程最终达到了一个基于小组的最终项目,学生在该项目中设计并展示了端到端的机器人系统,用于未来的空间探索,行星科学和地球观察。
交互式聊天机器人应用程序是现代时代的最新发明。医疗保健行业与人际交往密切相关,似乎像聊天机器人这样的对话式人工智能应用程序更为普遍。聊天机器人的响应方式应该让用户感觉自己正在与真人交谈。聊天机器人根据清晰的数据集和可持续的后端逻辑进行响应以生成结果。医疗聊天机器人通过以类似人类的方式与用户互动,简化了医疗保健提供者的工作并有助于提高他们的绩效。医疗保健领域的聊天机器人可能具有为患者提供即时医疗信息、在疾病出现的第一个迹象时推荐诊断或将患者与社区中合适的医疗保健提供者 (HCP) 联系起来的潜力。[3]