器官芯片 (OOC) 是一种基于微流控的细胞培养装置,其中包含连续灌注的腔室,其中有活细胞,用于模拟组织和器官水平的生理学 ( Bhatia and Ingber,2014;Ahadian 等人,2018)。OOC 的开发源于人们认识到传统的二维静态细胞培养方法无法模拟细胞在体内所处的环境 ( Ryan 等人,2016;Duval 等人,2017)。微流控技术通过在微观层面操纵流体,提供了一种模拟时空化学梯度、动态机械力和关键组织界面的方法。已经开发出可以重现人类肺(Huh et al., 2010)、心脏(Maoz et al., 2017)、胃(Lee KK et al., 2018)、肠(Kim et al., 2016)、肝(Weng et al., 2017)、肾(Sateesh et al., 2018)、血管(Wang et al., 2015)等复杂生理微环境关键方面的 OOC 系统。此外,已经提出了多器官芯片或身体芯片系统(Sung et al., 2019;Zhao et al., 2019a)。 OOC 平台已在许多生物医学领域显示出应用潜力,例如基础生理和药理学研究( Zhang and Radisic,2017 ; Zhang et al.,2018a )。
本模块探讨了人兽嵌合体及其在器官移植生产中的应用所涉及的伦理问题。目前,美国有大量器官移植积压。器官移植的平均等待时间接近 5 年,每天约有 20 人死于等待移植的名单上。这场危机迫使人们制定新的移植器官获取策略。这些进展之一是利用嵌合体为接受者培育定制器官的前景。嵌合体是由两种遗传上不同的细胞组成的生物体。嵌合可以发生在一个物种内,也可以发生在两个不同物种之间。后一种嵌合体引起了科学家的兴趣,因为它可能是一种生成适合人类移植的器官的方法。提出的策略是从非人类动物胚胎(通常是猪)和人类干细胞中创造嵌合体。最终,在嵌合体成年后,干细胞捐赠者将接受嵌合体移植的新的类人器官。当然,杂交物种和牺牲动物生命进行器官移植会带来一些道德问题,但嵌合体研究已经流行了几十年,并预示着光明的未来。本模块的目标是让学生了解嵌合体研究的主题,特别是它与器官移植的关系,并引发关于这一医学进步的伦理问题的有益辩论。
可预防疫苗的疾病仍然是移植受体中发病率和死亡率的主要来源。自2004年美国移植学会的固体器官移植接受者疫苗接种指南(1)以来,已经获得了几种新疫苗。移植临床医生被患者和同事关于这些疫苗在移植候选者和食物中的效用和安全性的问题所淹没。此外,新数据似乎还考虑了一些已建立的疫苗,疫苗接种后缺乏排斥和较新的佐剂策略。在Medline搜索中审查了2004年至2007年之间发表的文献。疾病控制与预防中心的免疫实践咨询委员会的指南进行了审查和总结,特别涉及人类乳头瘤病毒,vari-cella和varicella-zoster疫苗,tetanus降低了diphtheria-蛋白 - 蛋白酶 - 细胞的甲壳虫(tdap)和conjucitiit conjc,and conjugc conjugc conjugc conjucciucciuc assiucis as ansjucciuc assis as ansjucc。肺炎疫苗。尽管尚未针对大多数新的许可疫苗进行移植接收者中的随机对照试验,但可以根据当前数据和准则来制定初步建议。进一步的研究对于确定新的临时和免疫策略的适应和最佳时机至关重要。
免疫系统可以保护自我免受非自我侵略的侵害。像细菌或病毒一样,转移器官由受体免疫系统反应的抗原组成,而没有免疫抑制,则拒绝了移植物。免疫抑制药物的作用是抑制同种免疫反应。对移植器官的拟南芥的免疫反应与对细菌和病毒的反应反应之间没有歧视反应,这使移植的患者非常容易受到感染。在造血干细胞移植(HSCT)中,从相关和无关的供体中获得了良好的临床经验,用于预测移植物抗宿主病(GVHD),最近用于监测对感染药物的侵害功能的监测。 尽管正在采取更新的努力来检测耐受性和排斥机制,但实现固体器官移植(SOT)的经验却不那么广泛。 器官移植后免疫系统保护受体免受感染疾病的能力的精确分析较少,并且开发用于监测免疫反应的术状态的测定法与>相关。在造血干细胞移植(HSCT)中,从相关和无关的供体中获得了良好的临床经验,用于预测移植物抗宿主病(GVHD),最近用于监测对感染药物的侵害功能的监测。实现固体器官移植(SOT)的经验却不那么广泛。器官移植后免疫系统保护受体免受感染疾病的能力的精确分析较少,并且开发用于监测免疫反应的术状态的测定法与这些测定有可能识别主题和/或专注于特定的抗infec-