穆罕默德·塔希尔·阿赫塔尔、法比恩·安福索、豪尔赫·阿里纳斯、努尔丁·阿塔拉、基思·阿滕伯勒、迈克·巴蒂亚里昂、戴尔芬·巴德、汉斯·本特森、弗里茨·范登伯格、马丁·范登伯格、特鲁斯·伯格、伯纳德·贝里、安妮莉丝·博克斯塔尔、杰拉德·博雷洛、迪克·博特尔杜伦、马克·布林克、桑德拉·布里克斯、罗伯特·L·布朗斯登、莱克斯·布朗、考特尼·巴勒斯让-皮埃尔·克莱尔布瓦、夏洛特·克拉克、路易斯·本托·科埃略、多米尼克·科林、史蒂芬·C·康伦、乔·库基耶里、帕特里夏·戴维斯、约翰·劳伦斯·戴维、弗朗西斯科·D·德尼亚、福特·德鲁、科尼利厄斯·杜兰、纪尧姆·杜蒂利厄、阿德里安·艾格、Tamer Elnady、雨果·法斯特、托马斯·费特克、安德烈·菲比格、萨尔瓦多·菲格罗亚、海因茨·马丁·费舍尔、伊恩·弗林德尔、 Adrian Fuente、Aslak Fyhri、Massimo Garai、David Pelegrin Garcia、Juan Jesus Garcia、Denis Gely、Klaus Genuit、Samir N.Y.格尔格斯、埃迪·格雷森、贝里·吉布斯、安妮塔·吉德洛夫-冈纳森、吕克·古伯特、伊达尔·格兰诺恩、科林·格里姆伍德、凯茜·吉古-卡特、克拉斯·哈格伯格、穆罕默德-阿里·哈姆迪、卡尔-克里斯蒂安·汉奇克、马库斯·赫克特、卡尔·霍普金斯、约恩·胡贝尔特、斯塔凡Hygge、Jeong Guon Ich、Bart Ingelaere、Ullrich Isermann、Sabine詹森、迪伦·琼斯、曼弗雷德·卡尔滕巴赫、艾琳·范·坎普、康健、史蒂芬·基思、罗尼·克拉博、伊冯·德·克鲁泽纳尔、让-吕克·库朱姆吉、安妮特·克鲁格-多克特、帕特里克·库尔茨、桑诺子、Soogab Lee、Peter Lercher、李凯明, 卢静, Luigi Maffei, Jeffrey Mahn, Thomas Maly, Toshihito Matsui, Young J. Moon、Mats E Nilsson、Svein Arne Nordby、Mikael Ögren、Jorge Patricio、Eja Pedersen
=~~~~i~~ re~~~~~~~~~~ .~~~ .~~ ~.r~~~ ~~~s.e. '.v.e~ .~~~~'. ~~~~~. 23 将睡眠障碍置于夜间烦恼的背景下。 27 一个从单一噪音源推导出夜间总体烦恼的理想模型 31 Schultz 合成曲线,显示受噪音严重困扰的百分比与其噪音水平的关系(L~ 39 更新的 Schultz 合成曲线,显示受噪音严重困扰的百分比与其噪音水平的关系(L~ 41 基于 LAeq(24h) 的飞机噪音剂量-反应关系 42 Miedema 审查的飞机噪音烦恼剂量-反应关系 43 建议采用 FICON 的剂量-反应烦恼曲线 44 周期烦恼方法示例 45 一天中不同时间的干扰剂量-反应关系。 46
56.标称 500 BPD 注入井中的五个流量剖析拖拽 ............................................................................................................................................. 86 57.标称 500 BPD 注入井中通过段塞跟踪检测管后流量 ............................................................................................................................. 88 58.720 BPD 注入井中通过段塞跟踪方法检查封隔器泄漏 ............................................................................................................. 89 59.已减去伪碱基活度的校正运行 #I ............................................................................................. 90 60.900 BPD 注入井在关闭一小时后进行交叉流检查 ............................................................................................. 91 61.图 60 中注入井中封隔器泄漏的静态速度射击检查标称速率为 900 BPD ...................................................................................... 93 62.适当缩放的静态速度射击测试,用于检测封隔器完整性,环空速度分辨率为 0.35 英尺/分钟泄漏率 ...................................................................................... 94 63.图 58 中封隔器下方滞留段塞的假设速度射击响应 ............................................................................................................................. 95 64.图 32 井的通道检查,井中盐水注入速率为 400 BPD ............................................................................................. 96 65.在 5,820-25 英尺处的穿孔下方通过速度射击方法进行通道检查,井中注入速率为 600 BPD ............................................................................................. 97 66.与图 65 速度射击相同的井的段塞跟踪调查,注入速率相同600 BPD ................................................................................................ 99 67.注入 536 桶水并关闭井后对井进行的温度测量 ................................................................................................................................ 100 68.通道检查,井注 2 BBL/min 的速度测量。......................... IOI 69.新井的关闭温度测量 ............................................................................................................. 103 70.将 40 BBL 泥浆泵入油管之前和之后的温度测量 ............................................................................................. 103 71.图 70 中的三个速度测量 .............................................................................................I 04 72.图 71 上速度射击后的接箍日志运行 ...................................................................................... 105 73.油管泄漏上方的速度射击@ 1 BPM 速率 ...................................................................................... 106-107 74.以 950 BPD 注入井的段塞跟踪调查 ............................................................................. 109 75.图 74 井的温度调查 ............................................................................................. 110 76.图 74 井的关井交叉流检查 ............................................................................................. 11 l 77.单独显示的带有压电检测元件的噪声(声音)测井探头 ............................................................................................................................. 114 78.噪声日志格式说明典型的环境或死井水平 ................................................................................................................................ 117 79.管道后方 20 BPD 水流进入已耗竭 250 PSI 的气区的噪声日志格式 ............................................................................................................. 118 80.两种电缆尺寸的测井电缆衰减系数 ............................................................................................. 120 81.水中声源的声音传播 ............................................................................................................. 122 82.管道压力为 8 I 5 PSIG 的封闭油井的噪声日志 ............................................................................. 124 83.井喷失控附近充满泥浆的裸眼井的噪声日志 ............................................................................................................. 125 84.与流动路径相关的噪声日志特征 ............................................................................................. 126 85.正在钻井的 9 5/8 英寸套管后方 500 桶/天高压水流的噪声记录 ............................................................................................................. 127 86.封闭井的噪声记录,管道后方水流的估计速率为 5,000 桶/天 ............................................................................................................. 128
技术和理论进步使Qudit国家在量子信息和组合中必不可少。量子算法代表了现代量子信息理论领域中的一个突出应用,为计算加速度提供了经典系统不可能实现的潜力。一种实现量子算法的著名方法涉及创建特定类型的异常纠缠的图形状态。超图状态,也称为多部分纠缠状态或高阶纠缠状态,是量子状态,它们将纠缠概念扩展到钟形状态或图形状态中通常发现的成对相关性之外。他们提供了一个平台来概括最初针对Qubit状态的想法。因此,例如,Qudit状态已在量子传送[1-3],量子计算[4 - 6],量子步行[7 - 9]和量子状态转移[10-12]中发现了应用。量子系统始终受到与环境环境相互作用的噪声的影响[13]。因此,对在嘈杂条件下进化的Qudit国家动态的研究是一个相关问题,我们在这里进行了研究。Qudits是Qubits的较高维度概括,在量子科学和技术的几个领域中变得越来越重要[14,15]。噪声在任何物理系统中总是不可避免的现象。特别是量子噪声具有非常特殊的特征,其效果通过非可逆操作员表征。在本文中,我们专注于研究噪声如何影响量子状态。为了研究噪声对状态的影响,应了解相应的量子通道的特征。量子通道由适当的kraus操作员表示。保真度是对此有用的诊断。我们研究的量子通道是dit-Flip噪声,相位翻转噪声,DIT相相位噪声,去极化噪声,ADC(非马克维亚噪声),非马克维亚倾向噪声和非马克维亚去极化噪声[16,17]。这些通道最初被定义为适用于Qubit。dit-Flip噪声,相位翻转噪声,DIT相相翻噪声和去极化噪声被推广到[3]中的Qudit状态。遵循此方向,我们将Qudits上的ADC(非马尔可夫噪声),非马克维亚式Dephasing和非Markovian去极化噪声进行了推广。针对这些通道中的每个通道计算了原始状态和最终状态之间的忠诚度的分析表达。这有助于根据量子状态评估噪声的影响。连贯性是大多数
Majorana零模式(MZM)被探讨为拓扑量化计算的有前途的平台[1-5]。作为其非本地性质的直接结果,原则上,基于majorana的量子比不容易折叠,并且与常规量子相比,可以提供更好的保护门。在过去十年中,通过观察零偏置率峰[6-12],4π-周期的约瑟夫森效应[13-15],在检测MZM的特征方面取得了许多实验进展[13-15],能量分配的指数长度依赖性[16,17,17,17]和coherent Single procker offerents和Coherent Single corperstions和Coherent offermond offerents和Coherent Singlestrent Electrent [17]和Coherent Electres [18] [18] [18] [18] [18] [18] [18] [18] [18] [18] [18] [18] [18] [18] [18]尽管很有希望,但这些签名被证明是对系统中MZM的存在做出明确判断[19-26]的明确判断。因此,从实验和理论的角度来看,对拓扑主体量子的测量值引起了显着的关注。成功实施了拓扑量子的读数将标志着从研究拓扑阶段的特性到拓扑保护的量子信息处理的过渡。此外,由于当前的物理移动MZM [27]似乎实际上是具有挑战性的,基于测量的方案[28,29]成为最有可能操作基于Majorana的拓扑量子计算机的手段。
诱发电位 (EP) 是嵌入自发性脑电图活动 (EEG) 中的离散信号。从噪声中提取它们需要重复记录。视觉或听觉刺激触发采集系统,然后收集“诱发电位”。诱发电位不同于自发性神经活动 (EEG),因为它与触发“事件”同步。实际上,触发事件的信号用于采集诱发电位信号。诱发电位 (PE) 被定义为大脑有限区域相对于另一个电中性区域的电势的瞬态变化。EP 由放置在活动结构发出的电场中的电极捕获,并与所谓的“参考”电极检测到的电位进行比较。当参考电极捕获脑神经活动时,传感器系统称为双极。另一方面,当参考电极位于没有大脑活动的区域(例如耳垂)时,传感器系统称为单极。在最好的情况下,我们刚才看到的感兴趣的诱发电位 (PE) 是在离源很远的地方捕获的,其幅度非常小,不超过十微伏。此外,它嵌入在电极捕获的连续大脑活动(EEG 高于 100 微伏)中。PE 有时低于放大器的背景。因此,在检查其特性之前,有必要从背景噪声中提取 PE。40 年来使用的经典方法是平均法。该方法由同步连续响应的平均值组成。诱发电位是一种根据受试者的注意力而发展的大脑活动,因此平均值不足以令人满意地研究它。
摘要变分混合量子经典算法 (VHQCA) 是利用经典优化来最小化成本函数的近期算法,该算法可以在量子计算机上进行有效评估。最近,VHQCA 已被提出用于量子编译,其中目标幺正 U 被编译成短深度门序列 V。在这项工作中,我们报告了这些算法一种令人惊讶的噪声弹性形式。也就是说,我们发现尽管在成本评估电路中存在各种不相干噪声源,但人们经常会学习正确的门序列 V(即正确的变分参数)。我们的主要结果是严格的定理,指出最佳变分参数不受广泛噪声模型的影响,例如测量噪声、门噪声和泡利通道噪声。此外,我们在 IBM 噪声模拟器上的数值实现在编译量子傅里叶变换、Toffoli 门和 W 态准备时表现出弹性。因此,变分量子编译由于其稳定性,对于噪声较大的中型量子设备具有实际用途。最后,我们推测这种抗噪声能力可能是一种普遍现象,适用于其他 VHQCA,例如变分量子本征解算器。
在使用基于电子或光子量子事件的物理噪声发生器进行实验时,人们反复观察到与随机分布的显著偏差。为了解释这些影响,有人提出了意识和思维之间基于意图的相互作用以及物理随机过程,这种相互作用要么是由个体思维引起的,要么由假定的全球思维引起。由于这些解释涉及“思维”和“意识”等物理上未定义的对象,因此本文给出了一个基于信息场概念的解释模型,该模型基于广义量子纠缠的概念,包括物理噪声过程与信息场的纠缠以及与量子隐形传态的类比。此外,在一项有 100 名参与者的随机对照研究中检验了使用这种物理噪声发生器捕捉个体定性特征的非随机假设。