基于模型的气候预测中的信号到噪声悖论(SNP)是指违反直觉的情况,在这种情况下,合奏平均预测的时间序列与对现实世界的观察更好,而不是与模型预测合奏的各个成员。这意味着现实世界的可预测性超过了模型世界内的可预测性。观测值与预测集合平均值的预期相关性与单调但非线性方式的预测系统的信噪比有关(Kumar 2009)。在此,“信号”是指集合平均值的时间变异性,而“噪声”是指合奏成员对集合平均值的可变性。考虑到预测系统的信噪比,集合均值预测与观测之间的相关性大于预期时发生SNP。SNP通常通过真实世界和模型世界之间可预测组件(RPC)的比率进行量化。观测值的可预测组成部分是根据集合均值信号与观测值之间的相关系数估算的,并且模型的(平方)可预测组件是从信号方差的分数到总模型方差的估计。后一个部分与集合均值信号与单个集合成员之间的(平方)相关系数相同。如果RPC明显大于1,则观测值比构成SNP的模型集成实现更可预测。(2014)和Eade等。(2014)。Scaife等人首先提出了支持SNP在季节性和十年气候预测中存在的证据。他们描述了北大西洋上冬季大气循环的可预测组成部分有时在模型中低于观测值。尽管自Scaife和Smith(2018)进行全面评论以来,许多研究探讨了SNP的不同方面,但尚未解决该问题的最终解决方案。牛津车间提供了一个专门的平台,不仅是为了向专家的受众介绍我们当前的理解,而且更重要的是,批判性地讨论了我们知识状态的差距和问题。研讨会的主要目标是实现对悖论的更好,更完整的理解,并确定有关其解决方案的建议。在研讨会期间,很明显,我们的社区,包括本报告的作者,对该问题进行了一系列观点,我们的会议报告反映了会议上提供的思想和证据的多样性。
基于得分的生成模型(SGM)旨在通过仅使用来自目标的噪声扰动样本来学习得分功能来估算目标数据分布。最近的文献广泛地集中在评估目标和估计分布之间的误差上,从而通过Kullback-Leibler(KL)Divergence和Wasserstein距离来测量生成质量。在对数据分布的轻度假设下,我们为目标和估计分布之间的KL差异建立了上限,这取决于任何依赖时间依赖的噪声时间表。在额外的规律性假设下,利用了有利的潜在收缩机制,与最新结果相比,我们提供了瓦斯坦斯坦距离的更严格的误差。除了具有易处理外,该上限还结合了在训练过程中需要调整的目标分布和SGM超参数的特性。最后,我们使用模拟和CIFAR-10数据集1通过数值实验来说明这些边界,并在参数族中识别最佳的噪声时间表范围。
基于得分的生成模型(SGM)旨在通过仅使用来自目标的噪声扰动样本来学习得分功能来估算目标数据分布。最近的文献广泛地集中在评估目标和估计分布之间的误差上,从而通过Kullback-Leibler(KL)Divergence和Wasserstein距离来测量生成质量。在对数据分布的轻度假设下,我们为目标和估计分布之间的KL差异建立了上限,这取决于任何依赖时间依赖的噪声时间表。在额外的规律性假设下,利用了有利的潜在收缩机制,与最新结果相比,我们提供了瓦斯坦斯坦距离的更严格的误差。除了具有易处理外,该上限还结合了在训练过程中需要调整的目标分布和SGM超参数的特性。最后,我们使用模拟和CIFAR-10数据集1通过数值实验来说明这些边界,并在参数族中识别最佳的噪声时间表范围。
量子神经网络 (QNN) 使用具有数据相关输入的参数化量子电路,并通过评估期望值来生成输出。计算这些期望值需要重复进行电路评估,因此即使在无误差的量子计算机上也会引入基本的有限采样噪声。我们通过引入方差正则化来减少这种噪声,这是一种在量子模型训练期间减少期望值方差的技术。如果 QNN 构建正确,则此技术不需要额外的电路评估。我们的实证结果表明,方差的降低加快了训练速度,降低了输出噪声,并减少了梯度电路的必要评估次数。该正则化方法以多个函数的回归和水的势能表面为基准。我们表明,在我们的示例中,它平均将方差降低了一个数量级,并导致 QNN 的噪声水平显着降低。我们最后在真实的量子设备上演示了 QNN 训练,并评估了错误缓解的影响。这里,优化是可行的,仅仅是由于方差的减少导致梯度评估中所需的拍摄次数减少。
我们提出了一种通用的去噪算法,用于同时对量子态和测量噪声进行层析成像。该算法使我们能够充分表征任何量子系统中存在的状态准备和测量 (SPAM) 误差。我们的方法基于对由幺正运算引起的线性算子空间的属性的分析。给定任何具有噪声测量设备的量子系统,我们的方法可以输出探测器的量子态和噪声矩阵,最高可达单个规范自由度。我们表明,这种规范自由度在一般情况下是不可避免的,但这种退化通常可以使用关于状态或噪声属性的先验知识来打破,从而为几种类型的状态噪声组合固定规范,而无需对噪声强度进行假设。这样的组合包括具有任意相关误差的纯量子态,以及具有块独立误差的任意状态。该框架可以进一步使用有关设置的可用先验信息来系统地减少状态和噪声检测所需的观察和测量次数。我们的方法有效地推广了现有的解决问题的方法,并且包括了文献中考虑的需要不相关或可逆噪声矩阵或特定探测状态的常见设置作为特殊情况。
摘要。Noise 是一个框架,用于设计和评估双方之间的认证密钥交换 (AKE) 协议,该协议使用 Diffie-Hellman (DH) 作为唯一的公钥密码系统。在本文中,我们对 Noise 和 PQNoise(最近推出的后量子版本的 Noise 协议框架)的计算和通信成本进行了评估。此外,我们介绍了 12 种基本(交互式)Noise 模式及其 PQNoise 对应模式的组合,从而获得混合握手模式,并将它们纳入我们的评估中。我们将 PQNoise 和新的混合模式集成到 Noise-C 中,这是用 C 编写的 Noise 协议框架的参考实现。为了评估 Noise 及其变体,我们使用 Linux 网络模拟工具模拟了具有不同延迟、吞吐量和数据包丢失设置的网络。对于所有 Noise 握手,我们选择了提供可比(量子前)安全级别的密码系统,即 X25519 和 Kyber512。我们在两台不同的设备上进行了实验,一台是搭载 Intel Core i5-10210U CPU 的笔记本电脑,另一台是搭载 32 位 ARM Cortex-A7 处理器的 Orange Pi One 开发板。我们收集的结果表明,在正常网络条件下,Noise 模式和 PQNoise 对应模式的执行时间几乎相同,除非后者需要额外的握手消息。然而,在网络条件较差、数据包丢失率较高的情况下,PQNoise 落后于 Noise,这主要是因为 Kyber512 的公钥和密文相对较大。当数据包丢失率较低时,我们的混合握手的执行时间与相应的 PQNoise 握手几乎没有区别,而在数据包丢失率较高时,差异很小。
变压器噪声研究 大型和小型交流变压器是发射噪声研究和开发的主题 [I - 13,291,因为法律要求配电变压器噪音更小,而且人们希望提高变压器的质量和适销性。变压器噪声源于变压器中机电力的周期性循环。这些力导致变压器周围的绕组、铁芯和外壳相对于彼此移动。
若干个带噪声的中型量子计算可以看作是稀疏量子计算芯片上的对数深度量子电路,其中两量子比特门只能直接应用于某些量子比特对。本文提出一种有效验证此类带噪声的中型量子计算的方法。为此,我们首先相对于钻石范数刻画小规模量子操作。然后利用这些刻画的量子操作,估计带噪声的中型量子计算得到的实际n量子比特输出态ˆρout|ψt⟩与理想输出态(即目标态)|ψt⟩之间的保真度⟨ψt|ˆρout|ψt⟩。尽管直接保真度估计方法平均需要 O (2 n ) 个 ˆ ρ 副本,但我们的方法即使在最坏情况下也只需要 O ( D 3 2 12 D ) 个副本,其中 D 是 | ψ t ⟩ 的稠密性。对于稀疏芯片上的对数深度量子电路,D 最多为 O (log n ) ,因此 O ( D 3 2 12 D ) 是 n 的多项式。通过使用 IBM Manila 5 量子比特芯片,我们还进行了原理验证实验,以观察我们方法的实际性能。