摘要:微电极阵列(MEA)允许通过感应:细胞外动作电位和(体内)局部场电位来监测数千个神经元/mm 2。MEAS在空间网格中排列了几个记录位点(或像素),并与电体内细胞培养物和/或集成在电皮质学网格中。This paper focuses on Electrolyte-Oxide MOS Field-Effect-Transistors (EOMOSFET) MEAs for cell- level recording and presents a complete model of the neuron-electronics junction that reduces to a single electrical scheme all the biological (the neuron) and physical layers (the electrolyte, the Diffuse/Helmoltz capacitances, the oxide and the MOS transistor) composing the interface.这允许预测来自生物环境(电解质浴)的噪声功率,并优化所有电源参数的主要目的,以最大程度地降低最终的感应噪声图,从而增强采集信噪比比率。频域模拟来自提议的模型表明,在构建EOMOSFET像素中涉及的所有参数都有一个最佳设计点,该参数允许在<12 µV rms <12 µV RMS <12 µV RMS的信号对噪声比例进行> 9 dB的信噪比。这最终将使通过电解质裂口流动的超湿神经电位信号的高分辨率记录,这些信号从未探索过采用平面电容耦合接口。
摘要 - 低成本,低功率和高效率集成系统的需求增加使设计射频(RF)模拟电路变得更加复杂。使用多指MOSFET是一种优化电路性能的有吸引力的技术。与单指MOSFET相比,它降低了硅区域,门电阻和寄生电容,这主要影响高频和噪声性能。但是,选择最佳手指数量仍然是一个具有挑战性的问题。本文研究了手指的数量(NF)对晶体管参数的影响,并评估其对RF收发器中多个关键功能的影响。该研究专门关注NF的函数,该研究在130 nm CMOS技术中实施的民用RF电路的性能。首先,提出了差异RF带通滤波器的设计。结果表明,使用多指MOSFET会导致芯片面积减少66.5%,功率消耗量增加了15%,而噪声图则减少了43%,与常规方法相比,线性性和频率范围的改善。然后,根据NF的不同配置,已经设计了一种在2.4 GHz左右运行的无电感LC-VCO和LNA。获得的结果通过应用多手指优化显示了该区域,功率增益,频率和噪声性能的改善,并表明保持NF的增加可以降低稳定性,线性和功耗。还通过蒙特卡洛模拟测试了所提出的电路,从而证实了它们的稳健性和不匹配变化。不同提议的电路和NF配置之间的详细分析比较证明,当NF较低时,MF技术是可靠的。
摘要 - 报告了基于标准40 nm CMOS技术的量子应用的低温宽带低噪声放大器(LNA)。LNA规范是从4.2 K处的半导体量子位的读数中得出的,其量子信息信号的特征是相位调节的信号。为了实现宽带输入匹配阻抗和低噪声图,可以利用输入晶体管的闸门电容。目标是将电阻和电容载荷与源电感变性的共同源阶段的输入阻抗匹配。电容载荷是由LC平行箱产生的,其谐振频率低于工作频率。实现的非构体等效电容已被证明是对输入阻抗匹配的好处。载荷的电阻部分是由cascode阶段的跨传导提供的。将电感器添加到cascode晶体管的门中以抑制其噪声,而具有两个共振频率的基于变压器的谐振器则用作第一个阶段的负载,从而扩展了操作带宽。提出并分析了LNA的低温温度操作的设计注意事项。LNA在整个频段(4.1-7.9 GHz)中实现了35±0.5 dB的测得的增益(S 21),回报损失> 12 dB,NF为0.75–1.3 dB(4.1-7.9 GHz),在室温下具有51.1兆瓦的功耗,同时显示为42±3.3 dB和NF的幂均值,均为0.2 db,Nf of 0.23-0.23-0.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d.65 d d d db。在4.6至8 GHz之间。据我们所知,这是基于在4 GHz以上工作的批量CMOS过程的第一个报告,该过程在房间和低温温度下均显示出亚1-DB NF。
由于低成本无人机的扩散代表了安全性的潜在风险增加[1] [2],因此对小小的无人机的检测最近已成为一个非常重要的话题。FMCW雷达被认为是无人机检测的最合适的解决方案之一,因为其架构简单性和短距离检测能力[1] - [4]。对小型无人机的检测代表了一项具有挑战性的任务,因为它们的尺寸非常有限和非反射材料组成意味着非常小的雷达横截面(RCS)。出于这个原因,只能通过利用毫米波频率,高发射功率和具有低噪声图(NF)和高动态范围的接收器来实现雷达检测范围和分辨率的优化。在这种情况下,在性能方面,硝酸盐(GAN)微波技术代表了最佳解决方案,因为它们为发射器和接收器微波前端提供了最先进的优点图[4] - [6]。在微波频率下对上GAN功率密度的开发是实现紧凑,高功率发射器所需的优势,以增加无人机目标的弱回声信号(低RCS)。另一方面,由于低噪声和广泛的动态范围特征的结合,GAN技术在RX部分中也非常有吸引力[5] - [9]。在本文中,我们描述了一种基于GAN的Ka-band MMIC LNA,该LNA将在FMCW雷达的接收器中被利用,以进行小型无人机检测。This feature is of primary importance in a FMCW radar receiver for drone detection, since the LNA needs to detect very low drone-echo signals (close to the thermal noise level), while maintaining its linearity even in presence of strong interferer/blocking signals, which are typically due to radar clutter and the leakage of the power amplifier of its own transmitter [3][4].MMW-GAN技术的采用使得可以同时针对低NF,高增益和大型动态范围,从而导致上KA频段无与伦比的组合性能。
1。介绍解决对短期范围内域内和纳特纳德式容量的需求不断增长,具有较高敏感性和波长施用多路复用(WDM)的连贯收发器被视为增加总体容量并达到总体能力的关键候选者[1,2]。O波段传输的距离和接收灵敏度受到更高的光纤衰减因子的限制,而WDM系统会引入更多的被动损失,例如多路复用器。使用O波段中的光放大器允许更长的触手可及,并使高通道计数配置可部署[3]。但是,在O波段中,尚不清楚放大技术的选择,尤其是在连贯的传输领域内。半导体光放大器(SOA)已经被探索以进行强度调制和直接检测(IM/DD)系统,作为在接收器端提供足够信号功率的一种方式[4]。然而,已知大量SOA表现出高噪声图并产生非线性失真,这阻碍了它们用于光学信号扩增的使用。此外,SOA通常会诱发信号chirp,从而使连贯的信号更加降低。量子点(QD)技术的进步允许与量子孔(QW)和散装对应物相比,QD SOA会产生较低的失真和chirp [5]。这很重要,因为SOA是O波段数据中心间接连接空间的良好候选者,因为它们的占地面积较小,功耗较小,而较小的功耗比掺杂的纤维纤维放大器(PDFA),并且最重要的是,它们可以集成到光子集成电路中(PIC)。2。尽管如此,不同SOA技术提供的总体性能和非线性增益动力学尚未进行测试和比较,并在IM/DD和相干调制的情况下,以建立下一代图片所需的高波特速率与纤维放大器进行比较。这项经验研究对于简化了一定的系统拓扑(调制格式,波特率等)的放大器选择很重要。因此,在这一贡献中,我们首先考虑了QD,QW和BOLK SOA的比较,即考虑两个关键的表现参数,这些参数会影响波形振幅和相位,即增加恢复时间(GRT)和线宽增强因子(亨利或α -Factor)。接下来,重要的是,我们通过研究依赖于这种放大器和PDFA的IM/DD和相干系统的BER性能,将分析扩展到O波段的高速系统领域。我们在第3节中通过实验证明,QD-SOA以高波德速率和IM/DD的PDFA和其他SOA的表现高,并且能够扩大多-TBPS WDM系统。SOA在本节中的表征,我们比较了具有相似属性的散装和QW-Soas(Inphenix ip- sad1301)以及来自Innolume的QD-SOA中的一些相关特征。主要结果总结在图中1 a)。它们与文献得出的“典型”值相辅相成。公平的比较需要从饱和度中运行所有SOA。否则,较低的饱和功率SOA将遭受添加的非线性失真。图相应的饱和功率如图1 b)描绘了该参数,该参数是(CW)输入功率在SOA中的函数。1 a)(第一列)。QD-SOA表现出较高的输入饱和功率(3dB增益降低),P坐在。所有的肥皂都在其最大增益点偏见。测量α因子对于IM/DD系统中CHIRP诱导的脉冲扩大以及相干系统中不需要的相位调制诱导的星座变形很重要。 SOA的此参数以简单的方式将活动层折射率的变化与载体密度变化响应材料增益的变化有关。 因此,对于传输应用,α因子的低值是理想的。 图的第3列 1 a)显示了所有SOA的测得的α因子。 除了散装SOA(显示出比预测的α因子低的SOA)之外,它们落在预期范围内,如第2列(摘自文献)所示。 QD-SOA展示测量α因子对于IM/DD系统中CHIRP诱导的脉冲扩大以及相干系统中不需要的相位调制诱导的星座变形很重要。SOA的此参数以简单的方式将活动层折射率的变化与载体密度变化响应材料增益的变化有关。因此,对于传输应用,α因子的低值是理想的。图1 a)显示了所有SOA的测得的α因子。除了散装SOA(显示出比预测的α因子低的SOA)之外,它们落在预期范围内,如第2列(摘自文献)所示。QD-SOA展示
