本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
本文讨论了轻型飞机座舱的主动噪声控制系统。基本系统使用残余误差信号的相干平均法来产生驱动二次源的信号。该系统的高级版本使用有关噪声波形的先验信息,自适应过程从假设的波形(具有足够幅度、相位和频率的正弦信号或甚至低通滤波的参考噪声信号)开始。在测试单通道系统之后,通过额外的模拟来验证所实现的噪声抑制,其中考虑了实际飞机座舱的测量声学特性(以脉冲响应为特征)。系统可以扩展到 SIMO(单输入多输出)类型的多通道版本,其中相同的转速计/参考信号经过足够的延迟(噪声信号通过座舱的声学传播)后驱动八个单通道系统,这些系统与多个增益延迟组合连接,以减少各个通道之间的串扰。
BH1750FVI ● 描述 BH1750FVI 是用于 I 2 C 总线接口的数字环境光传感器 IC。此 IC 最适合获取环境光数据,以调整手机的 LCD 和键盘背光功率。它可以在高分辨率下检测宽范围。(1 - 65535 lx)。● 特点 1) I 2 C 总线接口(支持 f / s 模式) 2) 光谱响应近似于人眼响应 3) 照度到数字转换器 4) 宽范围和高分辨率。(1 - 65535 lx) 5) 通过断电功能实现低电流 6) 50Hz / 60Hz 光噪声抑制功能 7) 1.8V 逻辑输入接口 8) 无需任何外部部件 9) 光源依赖性小。 (例如:白炽灯、荧光灯、卤素灯、白色 LED、太阳光) 10) 可选择 2 种 I 2 C 从属地址。 11) 可调节光学窗口影响的测量结果(使用此功能可以检测最小 0.11 lx、最大 100000 lx。) 12) 测量变化小(+/- 20%) 13) 红外线的影响非常小。 ● 应用 手机、液晶电视、笔记本电脑、便携式游戏机、数码相机、数码摄像机、PDA、液晶显示器
摘要 2-1 2.1 简介 2-1 2.2 主动控制的总体思路 2-1 2.3 组件技术 2-6 2.3.1 进气口 2-6 2.3.1.1 主动进气口控制 2-6 2.3.1.2 主动噪声抑制 2-8 2.3.1.3 主动噪声消除 2-8 2.3.2 风扇和压缩机 2-8 2.3.2.1 组件要求 2-8 2.3.2.2 主动喘振控制 2-9 2.3.2.3 主动流量控制 2-11 2.3.2.4 主动间隙控制 2-13 2.3.2.5 主动振动控制 2-14 2.3.3 燃烧室 2-15 2.3.3.1 简介 2-15 2.3.3.2 控制过程的物理原理 2-16 2.3.3.3 主动燃烧控制的最新进展 2-17 2.3.3.4 AIC 控制组件 2-18 2.3.4 涡轮 2-19 2.3.4.1 组件要求 2-19 2.3.4.2 主动间隙控制 2-20 2.3.4.3 冷却空气控制 2-22 2.3.4.4 主动流量控制 2-23 2.3.4.5 可变涡轮容量 2-24 2.3.5 喷嘴 2-24 2.3.5.1 主动噪声控制 2-24 2.3.5.2 自适应喷嘴 2-26 2.3.5.3 推力矢量 2-27
随着现代电子设备的使用规模随着市场需求的不断增长,确保其电磁兼容性的任务变得前所未有的紧迫,这已不是什么秘密。为了确保系统性能满足当今应用的需求,制造商必须考虑某些设备的电磁辐射对其他设备功能的影响,使其能够抵抗干扰。本年度出版物收集了来自各种行业杂志的文章,涉及这一非常严重问题的最紧迫方面。读者将在该集中找到有关标准化的文章,包括测试和新的立法框架、有关在高速系统中使用无源元件的特性的材料以及噪声抑制滤波器、有关接地电子设备和概念的出版物。有效的电磁干扰屏蔽,以及有关电磁兼容性的设计、构造和测试的文章。当然,我们很清楚还有另一本关于同一主题的行业出版物。然而,由于它取之不尽用之不竭,我们希望借此机会更全面地涵盖它,在一个集合中呈现最广泛的俄语出版物平台。我们诚邀希望合作的作者和公司分享他们的经验,用实际例子谈论解决EMC问题,并展示他们的产品。下一本年鉴计划于 2019 年 6 月发行。谨致 EMS 年鉴编辑们的良好祝愿
版权所有 © 2009 SAE International 摘要 时间触发网络技术(如 TTP(时间触发协议))已开始用于关键的航空航天应用,如飞行控制。虽然 TTP 提供了严格的确定性和容错规范,但它并未定义物理层。TTP 的“事实上的”物理层 RS-485 在许多方面存在不足。这些不足包括相对较低的最小发射器电压、较低的接收器阈值,以及在许多方面缺乏特异性。后者包括总线信号电平、发射器过零失真和接收器过零容差、隔离方法、终端输出噪声、共模和噪声抑制以及输入阻抗。MIL-STD-1553 已在飞行和任务关键型军事应用中部署了数十年,它定义了一个经过高度验证且强大的物理层。本文介绍了 MIL-STD-1553 的物理层作为与 TTP 一起使用的候选。简介 物理层是飞行关键应用中使用的总线和网络的重要组成部分,需要权衡拓扑、数据速率、电缆长度、功率和成本。时间触发技术(如 TTP(时间触发协议)和 FlexRay)使用多种拓扑,包括多点总线以及有源和无源星型。TTP 未指定物理层,因此部署了多种实现,而不是使用通用标准。MIL-S
摘要 - Audio DeNoisisiques是增强音频质量的重要工具。尖峰神经网络(SNN)为音频转化提供了有希望的机会,因为它们利用了脑启发的体系结构和计算原理来有效地处理并分析音频信号,从而通过提高的准确性和降低了计算机上的高空空间,从而实现了实时Denoo。本文介绍了Spiking-Fullsubnet,这是一种基于SNN的实时音频DeNoising模型。我们提出的模型不适合一种新型的封闭式尖峰神经元模型(GSN),以有效捕获多尺度的时间信息,这对于实现高赋予音频降解至关重要。此外,我们建议将GSN集成在优化的全snet神经架构中,从而实现了全频段和子带频率的有效处理,同时显着降低了计算的额外处理。与体系结构的进步一起,我们结合了一个基于度量歧视的损失函数,该功能有选择地增强所需的性能指标而不会损害他人。经验评估表明,尖峰全鞋的表现出色,将其排名为英特尔神经形态深噪声抑制挑战的轨道1(算法)的赢家。索引术语 - 语言denoising,尖峰神经网络,neu-Romorphic Computing,Audio Signal Processing
非互易性源自时间反演对称性的破坏,已成为各种量子技术应用的基本工具。它使信号定向流动和有效噪声抑制成为可能,是当前量子信息和计算系统架构中的关键要素。在这里,我们探索其在优化量子电池充电动力学方面的潜力。通过在充电过程中通过储层工程引入非互易性,我们诱导从量子充电器到电池的定向能量流,从而显着增加能量积累。尽管存在局部耗散,但与传统的充电器-电池系统相比,非互易方法可将电池能量提高四倍。我们证明,采用共享储层可以建立一个最佳条件,其中非互易性可以提高充电效率并提高电池中的能量存储。这种效应在稳态极限下可以观察到,即使在过阻尼耦合状态下也适用,从而无需对演化参数进行精确的时间控制。我们的结果可以扩展到量子节点的手性网络,作为多单元量子电池系统来增强存储容量。所提出的方法很容易使用目前最先进的量子电路来实现,无论是在光子学还是超导量子系统中。在更广泛的背景下,非互易充电的概念对传感、能量捕获和存储技术或研究量子热力学具有重要意义。
当前量子计算机 (QC) 生态系统面临的挑战之一是稳定与其内部量子比特状态纠缠相关的相干性。在这项实证研究中,我们每天监控 IBM 公共访问 QC 网络的可靠性。这些最先进的机器中的每一台都有完全不同的量子比特关联,这意味着对于给定的(相同)输入程序,它们可能会输出一组不同的结果组合概率(包括正确和错误的结果)。虽然我们专注于“蓝色巨人”公司提供的计算结构,但我们的调查可以轻松转移到其他当前可用的量子主机。更详细地说,我们使用专门设计的计算要求高的四元搜索算法来探测这些量子处理器。如前所述,这个量子程序每 24 小时执行一次(持续近 100 天),其目标是将这种新颖而真实的设备类型的运行能力发挥到极致。接下来,我们根据每台计算机的奇异性以及总执行次数对得到的结果进行比较分析。此外,我们随后应用(50天)改进过滤来对 IBM 提出的结果进行噪声抑制。Yorktown 5 量子比特计算机在一天内实现了高达 33% 的噪声过滤,即在预期结果中达到 90% 的置信度。从我们持续和长期的测试中,我们得出量子计算器仍然存在改进空间,以保证对返回结果有足够的信心。
论文还展示了近期的突破性成果,展示了窄带高功率 DFB 源,以及半导体光放大器 (SOA) 增益芯片的初步结果。此外,论文还强调,BluGlass 已成功展示了集成 GaN 主振荡器功率放大器 (MOPA),该放大器在单一空间模式下实现了 750 mW 的功率。集成设备用与半导体光放大器对齐的快轴和慢轴透镜取代单模激光器,在减小尺寸和复杂性的同时提高了功率。BluGlass 首席执行官 Jim Haden 表示:“我们在可见光 GaN 激光器、单模、近单频、MOPA 和光子集成解决方案方面的领先进展是革命性行业的关键第一步,包括航空航天、国防、量子计算和生物医学应用。” BluGlass 正在扩展可见激光能力的范围,从紫色到蓝绿色的 DFB 波长的增加、世界一流的噪声抑制以及单模激光器与功率放大器的集成,在单一空间模式下可实现 750 mW 的蓝光,这些都证明了我们世界领先的团队所开创的惊人创新。“我们不断增长的战略能力使 BluGlass 能够利用量子传感、通信和计算等令人兴奋的增长市场。这些进步将使我们的客户能够通过创建局部量子解决方案来解决复杂问题,例如大气激光雷达检测晴空湍流、水下通信和激光雷达以及 GPS 欺骗和干扰。