受损脊髓组织的有效再生和功能恢复一直是再生医学领域关注的焦点。由于血脊髓屏障 (BSCB) 的阻塞、药物缺乏靶向性以及损伤部位的病理生理学复杂,脊髓损伤 (SCI) 的治疗具有挑战性。脂质纳米囊泡,包括细胞衍生的纳米囊泡和合成脂质纳米囊泡,具有高度的生物相容性,可以穿透 BSCB,因此是针对性治疗 SCI 的有效递送系统。我们总结了脂质纳米囊泡在 SCI 靶向治疗方面的进展,讨论了它们的优势和挑战,并对脂质纳米囊泡在 SCI 治疗中的应用进行了展望。虽然大多数基于脂质纳米囊泡的 SCI 治疗仍处于临床前研究阶段,但这种低免疫原性、低毒性和高度可工程化的纳米囊泡将为未来的脊髓损伤治疗带来巨大的希望。
抽象的低温电子显微镜(Cryo-EM)是可用于询问生物材料的纳米级结构的最强大工具之一。我们最近表明,冷冻EM可用于测量具有子立体精度的脂质囊泡和生物膜的双层厚度,从而导致在多组分脂质混合物和巨型质膜膜囊泡中直接可视化不同厚度的纳米镜结构域。尽管冷冻EM在揭示生物膜的横向组织方面具有很大的潜力,但实验条件的巨大参数空间仍有尚待计算。在这里,我们系统地研究了仪器参数的影响和图像对液体的影响,以准确测量双层脂质体内不同厚度的双层厚度和区分不同厚度的区域。由于1)每个囊泡的大小不同,曲率不同,对图像采集优化和分析的这种独特的应用对图像采集优化和分析的特定需求,2)每个囊泡中的域大小可能是异质的,而3)3)囊泡的随机取向扩大了投影图像中域大小的可变性。 我们还展示了空间自相关分析,以提取有关侧向异质性的其他信息。对图像采集优化和分析的这种独特的应用对图像采集优化和分析的特定需求,2)每个囊泡中的域大小可能是异质的,而3)3)囊泡的随机取向扩大了投影图像中域大小的可变性。我们还展示了空间自相关分析,以提取有关侧向异质性的其他信息。
细胞在细胞外环境中释放各种类型的膜囊泡。这些称为细胞外囊泡(EV),包括外泌体和微泡。外泌体是相对较小的细胞外膜囊泡(30-150 nm),并通过转移生物分子(例如核酸,蛋白质,酶和脂质)在细胞之间转移了一种重要的细胞对细胞通信方式。此外,它们可以用作各种疾病的生物标志物,还被研究为下一代治疗剂的天然药物输送车系统。在这里,我们通过高速和超速离心的组合描述了从脂肪来源的干细胞中的小细胞外囊泡(EV)的快速隔离过程。将细胞培养在Bioblu®0.3C单使用生物反应器中,并由DASBOX®迷你生物反应器系统控制。DASBOX迷你生物反应器系统允许大量干细胞培养,因此高产量
多年来逐渐开始并进展的疾病。这些HD的疾病不能与一个领域的残疾孤立考虑,导致另一个领域的问题。认知障碍的特征是降低了心理处理的速度和灵活性。精神疾病较不可预测。人们可能患有抑郁症,躁狂症,强迫症和各种形式的精神病。几乎所有具有高清的人都会经历特定疾病的人格和行为变化,从而对其婚姻,社会和经济福祉造成严重影响。运动障碍包括非自愿运动(唱片)的出现以及自愿运动的损害,从而导致手动敏捷性降低,言语含糊,吞咽困难,平衡问题和跌倒。最公认的运动症状是骗子,传统上,亨廷顿氏病的临床诊断是基于对此症状的观察。超过90%受HD影响的人患有唱片,其特征是非自愿运动通常是突然,不规则且毫无目的的运动。在疾病早期的肢体中,运动通常更为突出,但最终可能包括随着疾病的进展,面部鬼脸,眼睑抬高,颈部,肩膀,肩膀,躯干和腿部运动。绒毛膜通常会随着时间的流逝而增加频率和振幅,并且可能在疾病发作后大约10年达到峰值。(6)治疗绒毛膜是高清管理的重要组成部分,如果绒毛膜引起患者的困扰或不适,则应考虑。(1-3,8)囊泡单胺转运蛋白2(VMAT 2)抑制剂是FDA标记的治疗剂,除非患者患有管理良好的抑郁症或自杀思想,否则被认为是一线治疗。(4)确切的作用机理尚不清楚,但是VMAT2抑制剂被认为可以作为单胺(例如多巴胺,羟色胺,去甲肾上腺素和组胺)的可逆消耗施加其抗凝血作用。它们可逆地抑制VMAT2,这是一种调节单胺从细胞质摄取到突触囊泡的转运蛋白,导致单胺摄取减少和单胺储存的耗竭。
神经元 (nEV) 释放的细胞外囊泡 (EV) 为测量周围循环的脑生物标志物提供了机会。目前还没有研究直接比较脑组织中的分子货物与人类循环中发现的 nEV。我们比较了 microRNA 和环境化学物质的水平,因为 microRNA 是研究最多的 nEV 货物之一,具有作为生物标志物的巨大潜力,而 nEV 中的环境化学负荷研究不足,可以揭示大脑中的化学物质水平。为此,我们利用匹配的脑组织和血清组,并分离血清总 EV 和血清 nEV。我们还生成并比较了不同匹配血清、血清总 EV 和血清 nEV 中的代谢组学谱,因为 nEV 中的代谢物货物也研究不足,但可以提供潜在的生物标志物。高表达的脑组织 miRNA 与 nEV 的相关性比血清或总 EV 更强。我们在 nEV 中检测到了几种环境化学污染物类别。 nEV 中的化学污染物浓度与脑组织水平的相关性比脑组织与血清或总 EV 之间的相关性更强。我们还在 nEV 中检测到了几种内源性代谢物。与血清和总 EV 相比,具有已知信号传导作用的代谢物有所丰富,例如胆汁酸、油酸、磷脂酰丝氨酸和类异戊二烯。我们提供的证据表明 nEV 货物与脑组织内容密切相关,进一步支持了它们作为脑液体活检的实用性。
饮酒是一种广泛的社会活动,对人类健康产生了复杂而多方面的影响。尽管中度饮酒与某些潜在的健康益处有关,但过度或慢性饮酒会破坏人体的免疫平衡,促进炎症并增加对感染的敏感性。与酒精毒性相关的有害作用包括细胞完整性的丧失。当细胞失去完整性时,他们也失去了与其他系统进行通信的能力。受酒精毒性干扰的系统之一是细胞外囊泡(EV)介导的通信。电动汽车是细胞间通信的关键介体。它们在酒精引起的发病机理,促进细胞之间的通信和分子交换中起着重要作用,从而可能导致与酒精相关的健康问题。调查它们在这种情况下的参与是解决酒精使用健康后果背后的复杂机制的基础,并可能为减轻酒精对免疫健康的不利影响的创新方法铺平道路。了解电动汽车在酒精引起的发病机理背景下的作用对于理解与酒精相关的健康问题背后的机制至关重要。
摘要 细胞外囊泡(EVs)作为天然载体,因具有良好的生物相容性、迷人的理化性质和独特的生物调控功能,被视为纳米医学领域的一颗新星。然而,天然EVs的应用仍存在靶向性差、易从血液循环中清除等问题,限制了其进一步发展和临床应用。核酸具有可编程、靶向、基因治疗、免疫调控等功能,通过整合功能性核酸的工程设计和改造,EVs作为一种体内治疗系统表现出优异的性能。本文简要介绍了核酸在疾病诊断和治疗中的作用和机制,总结了核酸功能化EVs的研究策略,并重点介绍了核酸功能化EVs在纳米医学中的最新进展,最后提出了核酸功能化EVs作为一种有前途的诊断系统所面临的挑战和前景。
从历史上看,微生物相关疾病的研究主要集中在病原体上,在科赫的假设的指导下。这种以病原体为中心的观点为疾病病因和微生物发病机理提供了机械理解。然而,下一代测序方法揭示了各种微生物在疾病中所扮演的角色的看法要细微得多,这突出了除个体病原体以外的微生物多样性的重要性。这种更广泛的观点承认宿主和微生物群落在疾病发展和抵抗中的作用。尤其是,营养不良的概念,尤其是在口腔内,引起了人们的注意,以解释复杂多数疾病的出现。这些疾病通常源自居民微生物而不是外来病原体,使他们的治疗变得复杂,甚至蒙上了我们对疾病病因的理解。口腔健康是通过共生微生物和宿主之间微妙的平衡来维持的,诸如龋齿和牙周疾病之类的疾病是由这种平衡的致病性扰动引起的。共生微生物,例如某些链球菌和corynebacterium spp。,通过涉及过氧化氢和膜囊泡分泌的机制来维持口腔健康,从而扮演着至关重要的作用,这些机制可以抑制致病物质并调节宿主免疫反应。最近的研究重点是分子共度主义的机制,扩大了我们对共生微生物组的这些关键功能的理解,证明了它们在促进口腔健康和预防疾病方面的核心作用。这些能力代表了针对预防疾病和管理的潜在创新策略的很大程度上未开发的储层,强调需要加强固有地抑制发病机理的共生微生物组。
fi g u r e 1表征,蛋白质组学分析以及对ANEV和BEV的差分分析。(a)来自代表性循环BEV和ANEV的透射电子显微镜图像。比例尺:200 nm。图像描绘了来自两个样本的代表性电动汽车。(b)通过NTA分析了每个实验条件的七种不同的EV制剂。代表性的NTA直方图显示BEV和ANEVS的平均粒径为200 nm。(c)Anevs的特征是Western blot。面板显示三名代表性患者的免疫印迹。真正的EV标记,例如CD63,TSG101,Syntenin-1和CD9。(d)通过基于质谱的定量蛋白质组学获得的蛮数据的维恩图代表了BEV和ANEVS中检测到的蛋白质之间的相交。(e)火山图显示了所有鉴定的蛋白质。在ANEVS(右侧)和BEVS(左侧)中的统计学上显着差异(p> .05)以蓝色出现。访问数字(uniprot)显示了感兴趣的蛋白质(cdc42,ficolin-2,s100a9)。主成分分析(F)和血浆衍生EV的无监督分层聚类(G)
摘要:细胞外囊泡的分泌,EVS,是原核生物和真核细胞的常见过程,用于细胞间交流,生存和发病机理。先前的研究表明,来自细菌纯培养物的上清液中的EV存在,包括革兰氏阳性和革兰氏阴性的聚糖降解肠道分子。但是,复杂微生物群落分泌的电动汽车的隔离和表征尚未清楚地报告。在最近的一篇论文中,我们表明,木材衍生的复杂β -mannan与常规饮食纤维具有结构性相似,可用于调节猪肠道肠道菌群的组成和活性。在本文中,我们研究了24小时在复合β -Mannan富集后,猪粪便菌群分泌的EV的产生,大小,组成和蛋白质组。使用透射电子显微镜和纳米颗粒跟踪分析,我们以165 nm的平均大小识别电动汽车。我们利用猪蛋白的基于质谱的元蛋白质蛋白基于猪蛋白的数据库,并从猪群中鉴定出355个元基因组组装的基因组(MAG),从而鉴定出303蛋白。对于从β -mannan生长的培养物中分离出来的EV,大多数蛋白质映射到两个MAGS MAG53和MAG272,分别属于梭菌和细菌。此外,具有第三次蛋白质的MAG为MAG 343,属于肠杆菌阶。在β -Mannan EV蛋白质组中检测到的最丰富的蛋白质参与了翻译,能量产生,氨基酸和碳水化合物转运以及代谢。总体而言,这项概念验证研究表明,从复杂的微生物群落中释放出的电动汽车的成功隔离。此外,电动汽车的蛋白质含量反映了特定微生物对可用碳水化合物源的响应。