作者:T Neri · 2022 年 · 被引用 8 次 — 支气管肺泡灌洗液 (BALF) 中的巨噬细胞被认为是肺 EV 的主要来源,而 EV 可调节正常的气道生物学,包括体内平衡和先天防御 [49,...
摘要:乳腺癌是女性最常见的癌症,人们一直致力于开发基于纳米药物的新型乳腺癌治疗方法。在本研究中,我们研究了计算机模拟姜黄素 (Cur) 的特性,发现了 Cur 的一些重要缺点。为了增强 Cur 的癌症治疗效果,使用三种不同的非离子表面活性剂(跨度 20、60 和 80)来制备各种载有 Cur 的囊泡 (Nio-Cur)。然后,用叶酸 (FA) 和聚乙二醇 (PEG) 修饰制备的 Nio-Cur 以抑制乳腺癌。对于 PEG-FA@Nio-Cur,Bax 和 p53 的基因表达水平高于游离药物和 Nio-Cur。使用 PEG-FA 装饰的 Nio-Cur,Bcl2 的水平低于游离药物和 Nio-Cur。当研究 PEG-FA@Nio-Cur 和 Nio-Cur 的 MCF7 和 4T1 细胞摄取测试时,结果表明 PEG-FA 修饰的囊泡表现出最明显的内吞作用。体外实验表明,PEG-FA@Nio-Cur 是一种很有前途的乳腺癌治疗中 Cur 递送策略。乳腺癌细胞吸收了制备的纳米制剂并表现出持续的药物释放特性。
此预印本版的版权持有人于2024年12月11日发布。 https://doi.org/10.1101/2024.12.11.626728 doi:Biorxiv Preprint
摘要:血脑屏障 (BBB) 维持中枢神经系统 (CNS) 的稳态并保护大脑免受循环血液中存在的有毒物质的侵害。然而,BBB 对药物的不渗透性是 CNS 药物开发的障碍,这阻碍了大多数治疗分子进入大脑。因此,科学家一直在努力开发安全有效的技术,以更高的靶向性和更低的脱靶副作用来促进药物渗透到 CNS。本综述将讨论人工纳米药物在 CNS 药物输送中的局限性以及使用天然细胞外囊泡 (EV) 作为治疗载体实现对 CNS 的靶向输送。关于使用 EV 进行 CNS 靶向药物输送的临床试验信息非常有限。因此,本综述还将简要介绍最近在外周神经系统中靶向药物输送的临床研究,以阐明 CNS 药物输送的潜在策略。已经实施了不同的前分离和后分离技术,以进一步利用和优化 EV 的天然特性。各种来源的 EV 也已应用于体外和体内中枢神经系统靶向药物输送的 EV 工程。本文将讨论这些研究在临床上的未来可行性。
摘要:建立CRISPR/CAS9(群集的定期间隔短的短文重复序列/CRISPR相关蛋白9)用于真核基因编辑的技术,不仅为分析基因功能开辟了新的途径,还为治疗干预提供了新的途径。虽然最初的方法允许靶向基因破坏,但最新的技术进步产生了各种各样的工具,以各种方式修改基因和基因表达。目前,这项技术的临床应用不超过期望,这主要是由于将CRISPR/CAS9组件的有效且安全地交付给生物体。靶向的治疗核酸和蛋白质的靶向体内递送在技术上仍然具有挑战性,例如,通过不必要的脱靶效应,免疫反应,毒性或快速降解转移车辆的进一步局限性。一种可能克服这些限制的方法采用细胞外囊泡作为细胞间递送装置。在这篇综述中,我们首先介绍了CRISPR/CAS9系统及其最新进步,概述主要应用程序,并使用外泌体或微泡列出将CRISPR/CAS9成分运送到真核生物细胞中的当前最先进的技术状态。
Developing a new cancer immunotherapeutic preparation using cell membrane vesicles A research group consisting of Professor Kagotani Yuki and dedicated lecturer Ito Yusuke, Department of Cancer Immunology, Institute of Advanced Medical Sciences, Keio University, and Associate Professor Ota Seiichi, Graduate School of Tokyo, and Chitose of the Aichi Cancer Center, have successfully developed nanoparticle-sized cell membrane vesicles that activate immune cells and attack cancer as a new treatment for cancer.
1干细胞和发育生物学系,罗伊恩干细胞生物学和技术研究所,教育,文化与研究学术中心(ACECR),伊朗德黑兰,2高级治疗治疗药物产品技术发展中心(ATMP-TDC),Royan Celligan Institute for Irect of Irecl of Irecrant for Irecan for Irecan for Irecrant for Irecr and Irecr,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,胃肠道疾病研究中心的流行病学研究所,胃肠病学和肝病研究所,伊朗德黑兰Shahid Beheshti医学科学大学,4年,运动,运动与健康科学学院,Loughborough University,Loughborough Universition,Lorreciténiforation,Frenchatory oferenting for Sciention for Sciention for Sciention for Scienti和生理病理学(IMOPA),法国南希1干细胞和发育生物学系,罗伊恩干细胞生物学和技术研究所,教育,文化与研究学术中心(ACECR),伊朗德黑兰,2高级治疗治疗药物产品技术发展中心(ATMP-TDC),Royan Celligan Institute for Irect of Irecl of Irecrant for Irecan for Irecan for Irecrant for Irecr and Irecr,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,IREC,胃肠道疾病研究中心的流行病学研究所,胃肠病学和肝病研究所,伊朗德黑兰Shahid Beheshti医学科学大学,4年,运动,运动与健康科学学院,Loughborough University,Loughborough Universition,Lorreciténiforation,Frenchatory oferenting for Sciention for Sciention for Sciention for Scienti和生理病理学(IMOPA),法国南希
在过去的二十年中,现代智能社会见证了各种智能电动设备的广泛发展,包括可穿戴的小工具和无人机。技术进步的激增导致对可靠和高性能存储设备的需求不断增长。[1]尽管通过严格的研究和开发对电池的性能进行了显着增强,但许多电池仍然无法满足下一代储能设备的特定要求,例如灵活性,安全性和高充电率。作为具有众多优势的替代方案和有前途的候选人,超级电容器吸引了越来越多的关注。[2]纳米技术的快速演变为探索具有高功率密度和能量密度的各种超级电容器铺平了道路。其中包括利用双层机制[3]以及使用FARADIC机制的金属氧化物和基于聚合物的超级电容器的基于碳的超级电容器。[4]基于碳的超级电容器由于其高比表面积和良好的电子电导率而表现出了出色的特性。但是,由于其理论特异性低
植物专业代谢物是物种特异性化合物,可帮助植物适应和生存在不断变化的生态环境中。花蜜包含各种专门的代谢产物,对于维持花蜜稳态至关重要。在这项研究中,我们采用了高性能液相色谱(HPLC)来比较变质花蜜和天然花蜜之间的糖成分,并进一步分析了颜色,气味,pH值和过氧化氢(H₂O₂)含量的变化。微生物菌株在网状花蜜中分离并使用与DNA测序结合的扩散板法分离并识别。液相色谱串联质谱法(LC-MS/ MS)被实施,以表征变质和天然花蜜之间的代谢物差异。随后进行了体外实验,以验证筛选的花蜜代谢物对分离的微生物菌株的影响。结果表明,某些网状花蜜会破坏和恶化,这破坏了花蜜稳态,并显着降低了授粉媒介的授粉效率。变质花蜜在颜色,气味,糖成分,pH和H2O2含量方面存在显着差异。腐败花蜜中微生物物种的数量和数量要高得多。天然花蜜中的H2O2含量可以达到(55.5±1.80)m m,而在变质花蜜中则无法检测到。从两种类型的花蜜中分离出15种不同的微生物菌株和364个差异代谢产物。未来的研究可以集中于进一步探索不同的体外实验表明,H2O2可以抑制除塞拉蒂亚液化菌外的网状花蜜中的所有细菌。12-甲基二核酸抑制了枯草芽孢杆菌,扁豆菌群堆积和rothia terrae,而肉豆蔻酸仅抑制Rothia terrae。这项研究中筛选的花蜜代谢物对花蜜专家酵母Metschnikowia Reukaufi没有影响。总而言之,这项研究的发现表明,C. noticulata nectar通过其代谢产物来调节微生物的生长,以维持花蜜稳态并防止变质。这项研究提高了对维持花蜜稳态的网状梭菌的生理机制的理解,并为控制花蜜疾病和维持网状梭菌的生殖能力提供了理论上的支持。