量子计算面临的挑战之一是由于噪声引入的相位随机化导致相干性丧失。对于基于离子阱的量子计算机,相干性受到磁场波动和用于量子比特操作的激光器线宽的限制。本论文致力于通过使用永磁体改善磁场稳定性来增强相干性,并建立一个测试装置来减少光纤激光线宽的加宽。以前使用线圈来产生磁场。它们的稳定性受到电流驱动器噪声的限制。为了提高磁场稳定性,线圈已被永磁体取代。设计了两个固定永磁体的框架,并进行了 3D 打印,然后安装在实验中。安装后,使用 Ramsey 测量法获得 1 / √ e 相干时间 τ sens = (489 ± 21) µ s 和 τ insens = (1540 ± 80) µ s,用于量子比特状态的塞曼子能级之间对磁场的更敏感和更不敏感的跃迁,而使用线圈时,τ sens = (491 ± 25) µ s 和 τ insens = (1254 ± 53) µ s。从这些结果中,我们能够推断出磁场和激光频率波动的均方根 (RMS),无论是在使用线圈还是永磁体时,p
电子转移是许多基本物理、化学和生物化学过程的核心,这些过程对生命至关重要。这些反应的精确模拟常常受到大量自由度和量子效应的阻碍。在这里,我们使用多种离子阱晶体通过实验模拟了分子电子转移的典型模型,其中供体-受体间隙、电子和振动电子耦合以及池弛豫动力学都可以独立控制。通过操纵基态和光学量子比特,我们观察到自旋激发的实时动态,测量了几种绝热和弛豫动力学状态下的传输速率。我们的研究结果为日益丰富的分子激发转移过程模型提供了试验场,这些模型与分子电子学和光收集系统有关。
1. 简介 量子计算、通信和传感正受到越来越多的关注,因为它们在许多重要任务中都有望实现比传统系统更出色的性能。存在许多不同的量子模态(捕获离子、中性原子、光子、超导和半导体量子比特);它们对光子功能的需求各不相同。在某些系统中,光子充当量子比特,而在其他系统中,光学器件充当量子比特的接口,可以直接准备、操纵或读出量子态,也可以间接作为更大系统的一部分(例如提供经典通信通道或参考激光振荡器)。在所有情况下,光子集成电路 (PIC) 都为实现光学功能提供了一种有吸引力的选择,因为它们体积小;能够创建大型和复杂的光学电路,从而有助于实现功能或量子比特数量的扩展;而且,与离散光学和光学系统相比,它们通常具有更优越的环境稳定性。
在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。
高保真度的单量子比特和多量子比特操作构成了量子信息处理的基础。这种保真度基于以极其相干和精确的方式耦合单量子比特或双量子比特的能力。相干量子演化的必要条件是驱动这些跃迁的高度稳定的本振。在这里,我们研究了快速噪声(即频率远高于本振线宽的噪声)对离子阱系统中单量子比特和双量子比特门保真度的影响。我们分析并测量了快速噪声对单量子比特操作的影响,包括共振π旋转和非共振边带跃迁。我们进一步用数字方式分析了快速相位噪声对 Mølmer-Sørensen 双量子比特门的影响。我们找到了一种统一而简单的方法,通过量子比特响应频率下的噪声功率谱密度给出的单个参数来估计所有这些操作的性能。虽然我们的分析侧重于相位噪声和离子阱系统,但它也适用于其他快速噪声源以及其他量子比特系统,在这些系统中,自旋类量子比特通过共同的玻色子场耦合。我们的分析可以帮助指导量子硬件平台和门的设计,提高它们对容错量子计算的保真度。
近年来,量子机器学习在理论和实践方面取得了长足的发展,已成为量子计算机在现实世界中应用的有希望的领域。为了实现这一目标,我们结合了最先进的算法和量子硬件,为量子机器学习应用提供了实验演示,并可证明其性能和效率。具体来说,我们设计了一个量子最近质心分类器,使用将经典数据高效加载到量子态并执行距离估计的技术,并在 11 量子比特离子阱量子机上进行了实验演示,其准确度与经典最近质心分类器的准确度相当,可用于 MNIST 手写数字数据集,并可实现 8 维合成数据的准确度高达 100%。
摘要:近几年来,我们每天处理的图像的大小和数量以及数据量都在迅速增长。量子计算机有望更有效地处理这些数据,因为经典图像可以存储在量子态中。量子计算机模拟器上的实验证明了这一承诺所基于的范式是正确的。然而,目前,在真正的量子计算机上运行完全相同的算法往往容易出错,无法有任何实际用途。我们探索了在真正的量子计算机上进行图像处理的当前可能性。我们重新设计了一种常用的量子图像编码技术,以降低其对错误的敏感性。我们通过实验表明,目前在量子计算机上编码并随后以最多 5% 的误差检索的图像的大小限制为 2×2 像素。一种绕过这一限制的方法是将经典过滤的思想与仅在本地运行的量子算法相结合。我们使用边缘检测的应用示例展示了这种策略的实用性。我们的混合过滤方案的量子部分是一个人工神经元,在真实的量子计算机上也能很好地运行。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
囚禁离子为量子计算和模拟提供了一个完美的平台,但提高它们的相干性仍然是一个关键挑战。本文,我们提出并分析了一种通过参数放大离子运动来增强囚禁离子系统中相干相互作用的新策略——通过挤压集体运动模式(声子),它们介导的自旋-自旋相互作用可以得到显著增强。我们通过展示它如何增强对量子计量有用的集体自旋态,以及如何提高多离子系统中双量子比特门的速度和保真度来说明这种方法的强大功能,这是可扩展囚禁离子量子计算的重要组成部分。我们的结果也与许多其他由玻色子介导自旋相互作用的物理平台直接相关。
I. 引言 量子计算 [1] 作为一种新范式,有望解决某些在传统计算机上难以计算的问题。离子阱量子计算机是在可预见的未来最有希望展现量子优势的候选者之一 [2]。然而,这种机器的扩展需要相应的工具支持才能充分发挥其潜力。特别是对于离子阱,有效地移动(即穿梭)离子是一个重要问题,因为不必要的移动不仅增加了所需时间,而且还增加了由于退相干而导致错误的可能性。这使得确定有效的移动时间表对于离子阱量子计算机中的有用计算至关重要。已经提出了解决该问题的第一个解决方案,例如在 [3]–[7] 中。然而,所考虑的架构相对简单,并未涵盖大部分可能的架构。在这项工作中,我们提出了一种基于循环的启发式方法的概念,用于为给定的量子电路生成有效的穿梭时间表。