摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
摘要 - 识别周围环境的物理特性对于机器人的运动和导航对于处理非几何危害(例如湿滑和可变形地形)至关重要。机器人在接触之前预测这些极端的物理特性将是很大的好处。但是,从视力中估算环境物理参数仍然是一个开放的挑战。动物可以利用他们先前的经验以及对自己所看到的东西和感受的了解来实现这一目标。在这项工作中,我们为基于视觉的环境参数估计提出了一个跨模式的自我监督学习框架,这为未来的物理范围内的运动和导航铺平了道路。我们弥合了在模拟中训练和识别视力的物理地形参数的现有政策之间的差距。我们建议在模拟中训练物理解码器,以预测多模式输入的摩擦和刚度。训练有素的网络允许以自我监督的方式将现实世界图像标记,以在部署过程中进一步训练视觉网络,这可以密集地预测图像数据的摩擦和僵硬。我们使用四倍的Anymal机器人在模拟和现实世界中验证物理解码器,表现优于现有基线方法。我们表明,我们的视觉网络可以预测室内和室外实验中的物理特性,同时允许快速适应新环境。- 项目页面https://bit.ly/3xo5aa8 -
拓扑物理学一直是冷凝物理物理学中最活跃的领域之一,到目前为止,已经发现了一系列新兴现象,包括拓扑绝缘子,半法和超导体,以及它们相关的量子自旋旋转式霍尔效应和主要的巨大效果和大巨大效果等。[1 - 6]。实际上,作为数学的概念,拓扑可以明确或暗示主导各种物理行为,而不限于电子,声音,光子,光子谱带在动量空间中。拓扑结合和铁罗克系统的合并已经产生了一个完全不同的故事,即磁性和/或电动型电动型的真实空间纹理可以是拓扑的,包括天空,梅隆和涡流数量有整数绕组数[7-11]。最近,在一些多表演中已经揭示了拓扑物理学的另一个分支,该分支在特定的磁电(ME)过程中表现出拓扑的绕组行为。例如,对于四倍的钙钛矿TBMN 3 Cr 4 O 12,提出了拓扑不可取向的罗马表面来描述磁性诱导的极化(P)的三维轨迹[12,13]。另一个突破是ME在GDMN 2 O 5中的切换,该5响应磁性周期生成了半MN旋转的拓扑数[14]。有趣的是,这种受拓扑保护的我的过程可以理解为在量子水平上的me曲柄。
猪血凝性脑脊髓炎病毒(PHEV),猪假拟南芥病毒(PRV),经典猪发烧病毒(CSFV)和日本的脑炎病毒(JEV)导致感染猪的神经学症状相似,及其对实验性诊断的差异性诊断。设计了四对特定引物和探针,分别针对PHEV N基因,PRV GB基因,CSFV 5'非翻译区域(5'UTR)和JEV NS1基因,并且开发了四倍的实时定量RT-PCR(QRT-PCR(QRT-PCR),以检测和分化的PHEV,pRV,pRV,pRV,pRV,pRV,&JEV。该测定显示高灵敏度,每种病原体的检测极限(LOD)为1.5×10 1拷贝/μL。该测定法仅检测到PHEV,PRV,CSFV和JEV,而没有与其他猪病毒交叉反应。测定内和测定间的变异系数(CVS)小于1.84%,可重复性很高。通过已发达的四倍体QRT-PCR测试了总共1,977个临床样本,包括组织样本和从中国广西省收集的全血样本,以及PHEV,PRV,PRV,CSFV和JEV的阳性率为1.57%(31/1,977),0.355%(7/1,1,97), (21/1,977)和0.10%(2/1,977)。也通过先前报道的QRT-PCR分析测试了这1,977个样品,这些方法的巧合率超过99.90%。发达的测定法被证明是快速,敏感和准确的,用于检测和分化PHEV,PRV,CSFV和JEV。
摘要:建模研究表明,由于大气 CO 2 浓度增加,陆地上地表气温 (SAT) 的增幅大于海洋上表气温的增幅。这种所谓的陆地–海洋变暖对比 f ,定义为陆地平均 SAT 变化除以海洋平均 SAT 变化,是全球变暖的一个显著特征。陆地热容量小不太可能是唯一的原因,因为陆地–海洋变暖对比是在 CO 2 加倍实验的平衡状态下发现的。已经提出了几种不同的机制来解释陆地–海洋变暖对比,但尚未获得全面的理解。在本研究的第一部分中,我们提出了一个基于大气顶部和大气的能量预算来诊断 f 的框架,这使得有效辐射强迫 (ERF)、气候反馈、热容量和大气能量传输异常的贡献能够分解为 f 。利用该框架,我们使用 15 个耦合模式比对计划第六阶段 (CMIP6) 地球系统模型,分析了 SAT 对 CO 2 突然增加四倍的响应。在近平衡状态下(第 121-150 年),f 为 1.49 6 0.11,这主要是由于陆地和海洋的 ERF 和热容量差异引起的。我们发现 ERF、反馈和能量传输异常的贡献往往会相互抵消,导致模型间 f 的扩散较小,而各个组成部分的扩散则较大。在没有热容量贡献的平衡状态下,ERF 和能量传输异常是 f 的主要贡献者,它与平衡气候敏感性呈现出微弱的负相关性。
AAR Mobility Systems Jeff Hermanson (231) 779-4815 jeffrey.hermanson@aarcorp.com AAR Mobility Systems' Website AAR Mobility Systems is a leading global supplier of military rapid deployment equipment and mobile tactical shelters, offering products that enhance our military and government customers' ability to mobilize, deploy, maneuver, and sustain forces.我们通过服务中心,领域服务团队和战略合作伙伴的网络来支持我们的产品。展位:74 |黄金赞助商ADS,Inc。Heather Maxham(757)419-1056 hmaxham@adsinc.com广告网站的网站广告是全球总理设备,采购和支持解决方案专家,军事,执法,第一个响应者和国防行业。我们专注于通过最大的产品和服务选择,最广泛的采购和合同选择以及世界一流的支持和物流解决方案来解决您的挑战。展位:92 |总理赞助商Aerovironment,Inc。Taylor Nobles(805)210-1754 nobles@avinc.com Aerovironment的网站Aerovironment是无人飞机系统(UAS)和战术导弹系统的全球领导者,并为国防,政府和商业客户提供服务。拥有近50年的经验,我们位于包括机器人技术,传感器,软件分析和连接性的未来功能的交集。展位:99 |总理赞助商Aivot Robotics,Inc。Shashwat Srivastav(425)802-8601 shashwat@aivot.com机器人学习技能,接收命令并用口语回复。AIVOT的软件可以部署在任何商业硬件上,例如机器人武器,四倍的机器人和无人车辆。展位:13 |黄金赞助商
摘要:将来耦合大脑 - 计算机界面(BCIS)和机器人系统可以在日常生活中实现无缝的个人助理系统,并且只能使用一个人的大脑活动来以离散的方式执行的请求。这些类型的系统可能对患有锁定综合征(LIS)或肌萎缩性侧面硬化症(ALS)的人特别感兴趣,因为它们可以使用大脑感测界面与机器人助手交流。在这项概念验证工作中,我们探索了无线和可穿戴的BCI设备如何控制四足机器人 - 波士顿动力学的位置。该设备可测量用户的脑电图(EEG)和用户从玻璃框架中嵌入的电极中用户的活性。用户通过进行心理微积分的大脑活动活动来回答一系列的问题/否答案。每个问题 - 答案对都有一套预先结合的动作集。例如,当序列解决为Yes响应时,提示斑点被提示穿越房间,捡起对象,并为用户(即带一瓶水)检索。我们的系统以83.4%的成功率实现。据我们所知,这是在个人助理用例中的无线基于非视觉的BCI系统与现场的第一集成。虽然这种BCI四倍的机器人系统是一个早期的原型,但未来的迭代可能体现友好和直观的提示,类似于常规服务犬。因此,该项目旨在在现代的个人助理机器人中铺平一条未来发展的道路,该机器人在日常生活条件下由无线和可穿戴的BCI系统提供支持。
引言瘦素是一种蛋白质结构的激素,由脂肪组织释放的167种氨基酸组成。它是由人类中的ob/ob基因编码的(1)。这种激素对能量平衡和食物摄入具有重要影响(2)。已经表明,主要由体内脂肪组织合成的瘦素在某种程度上由胎盘,胃上皮,骨骼肌,垂体和乳腺分泌(3)。瘦素主要由脂肪组织合成和分泌,通过调节其在下丘脑中的特定受体来调节能量摄入和能量消耗之间的平衡,从而充当了一种抗生素因子。已经证明瘦素具有许多功能,例如繁殖,造血,胃肠道功能的调节,血管生成,交感神经系统激活的调节,确定骨密度,热生成和脑发育(3)。瘦素瘦素的结构具有四倍的螺旋结构,在结构上类似于1型螺旋家族的成员(4)。所有受体类型的瘦素类型均由LEPR基因编码,但它们以6种形式存在,即OBRA,OBRB,OBRC,OBRD,OBRD,OBRE和OBRF,具体取决于不同长度的细胞质结构域,这是不同长度的替代mRNA所用的替代mRNA所用中的替代mRNA所产生的。这些受体是1类细胞因子受体家族的成员(5)。瘦素受体在大脑和外周组织中表达。瘦素与其受体的结合导致刺激与Janus激酶2途径相关的受体,从而导致两个酪氨酸残基的磷酸化。(6)。在哺乳动物的所有组织中都可以看到瘦素受体(例如OBRA和OBRB)的表达,但OBRB仅在下丘脑中高度表达(4)。瘦素的三级结构。
摘要:目的:构建一个模型,以预测基于nom图的妊娠糖尿病(GDM)的风险并进行验证。方法:从2018年1月至2021年5月在西安国际医疗中心医院接受治疗的182例GDM患者的数据进行了回顾性分析。在同一时期选择了在西安国际医疗中心医院进行的491个正常分组,他们被选为对照。比例为7:3,GDM患者分为训练组(n = 128),验证组(n = 54)组,将491个正常分组分为训练对照组(n = 344)和验证对照组(n = 147)。临床数据,并通过逻辑回归分析了GDM的危险因素。r语言用于构建GDM的预后预测列图模型,并采用接收器操作特征曲线来评估该列格图模型在预测GDM预后的准确性。结果:单变量分析表明,培训组和训练对照组之间的年龄,体重指数(BMI),糖尿病家族史,血红蛋白,甘油三酸酯,血清铁蛋白和空腹血糖在三个月之间是不同的(p <0.05)。多变量分析表明,在前孕期,年龄,BMI,血红蛋白,甘油三酸酯,Se Rum铁蛋白和空腹血糖是GDM的独立危险因素(P <0.05)。曲线下预测训练组GDM风险的面积为0.920,验证组的面积为0.753。基于逻辑回归方程,风险公式为-5.971 + 1.054 *年龄 + 1.133 * BMI + 1.763 *血红蛋白 + 1.260 *甘油三酸酯 + 3.041 *血清铁蛋白 + 1.756 *在第一个四倍的群中,甘油蛋白 + 1.756 *。结论:年龄,BMI,血红蛋白,血清铁蛋白和空腹血糖在头三个月是GDM的危险因素。
Friday, 6 September 2024 Department of Climate Change, Energy, the Environment and Water 4 Parramatta Square 12 Darcy Street Parramatta NSW 2150 Lodged via email: energysecurityy@environment.nsw.gov.au Clean Energy Council Submission to Energy Saving Scheme and Peak Demand Reduction Scheme Statutory Reviews 2025 Discussion Paper The Clean Energy Council (CEC) welcomes the opportunity to provide feedback to the New South Wales (新南威尔士州)气候变化,能源,环境与水(DCCEEW)节能计划(ESS)和峰值需求减少计划(PDRS)法定评论2025讨论文件。CEC是澳大利亚清洁能源行业的峰值机构。我们代表并与澳大利亚领先的可再生能源和储能业务以及国家电力市场(“ NEM”)的一系列利益相关者合作,以进一步发展澳大利亚清洁能源的发展。我们致力于加快澳大利亚能源系统的转变,从而使澳大利亚的能源系统更聪明,更清洁。CEC强烈支持新南威尔士州政府对减少能源消耗,需求响应和需求转移机制的关注,以提高能源系统的可靠性和可持续性并减少消费者账单。增强能源过渡的最大机会位于市场的需求方面,CEC赞扬了新南威尔士州DCCEEW所做的重要工作。通过提高我们的能源绩效(包括需求响应,负载转移和能源效率),我们可以使能量过渡更快,更便宜,更顺畅,更可靠。目的强调了可靠性,成本和CEC支持了ESS和PDR的讨论文件中概述的当前原则和其他目标,并被认为是适合用途的。在澳大利亚能源市场运营商2024年的2024集成系统计划(ISP)步骤变化方案中建模的实现澳大利亚可再生能源和排放目标的最小成本途径,需要超过四倍的屋顶太阳能,分布式电池容量增加34倍,而分布电池容量增加了135倍的电池容量135倍。