在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
摘要:最近,在15-40 GPA条件(自然,621,493,2023)的镍(La 3 Ni 2 O 7)中,已有T c = 80 K的新超导体报道,这是第二种非常规超导体的类型,除了较大的cup池,液态氮气高于液体氮气。但是,本报告中绘制的相图主要基于低温和高压条件下的传输测量,并在室温下进行了假定的相应X射线衍射(XRD)结果。这鼓励我们进行原位高压和低温同步XRD实验,以确定哪个阶段负责高T C状态。除了从正栓的AMAM结构到正交FMMM结构的相过渡外,当将样品压缩到40 K左右的19 GPA时,在40 K左右将超导性在La 3 Ni 2 Ni 2 O 7中发生在40 K大约19 GPA时,还发现了具有I 4/ mmm的空间的四方相。基于该四方结构的计算表明,接近费米能的电子状态主要由E G轨道主导(3D Z
当前美国军事战略和持续复杂的全球安全环境使得联盟战争和多国行动成为美国国家安全战略的主要特征。联盟为军事行动提供了广泛的技术、作战和后勤支持基础;并减轻了美国实现军事目标和目的所需的财政和人力负担。美国战略指导表明,联盟和与国际伙伴的关系是美国和美国国防部的最高优先事项之一。2022 年国家安全战略指出,我们重振了美国无与伦比的联盟和伙伴关系网络,以维护和加强过去 75 年来实现如此多稳定、繁荣和增长的原则和机构。我们深化了在欧洲和印度太平洋地区的核心联盟。北约比以往任何时候都更加强大和团结。这一点从其最新成员芬兰的加入以及它希望欢迎瑞典成为新盟友可以看出。我们正在通过与澳大利亚和英国的安全伙伴关系 (AUKUS) 等举措,进一步加强跨地区合作伙伴和战略的联系。我们还在开拓创新方式,与合作伙伴就共同关心的问题开展合作,例如我们与欧盟、印度太平洋四方安全联盟、印度太平洋经济框架和美洲经济繁荣伙伴关系。
这里我们报道了在很宽的掺杂浓度范围(x = 0 ∼ 0 . 8)下锂和乙二胺插层的 FeSe 的结构和电子相图。未掺杂的 (C 2 H 8 N 2 ) y Fe 2 Se 2 结晶为正交相。随着锂掺杂的增加,在 x = 0 . 35 处发生正交到四方相变,并且超导四方相一直持续到 x = 0 . 5。同时,发现 T c 强烈依赖于掺杂剂浓度,从 x = 0 . 35 时的 30 K 迅速上升到 x = 0 . 5 时的 45 K。Li 0 . 31(3) (C 2 H 8 N 2 ) 0 . 52(7) Fe 2 的晶体结构。利用高分辨率中子衍射数据分别在 5、60、150 和 295 K 下测定了 FeSe 四面体的形变。在 150 到 295 K 之间,FeSe 四面体的畸变显著增强,同时,在同一温度范围内正常态霍尔电阻率由负转正。在 230 K 以上,电子掺杂的 Li 0.5(C 2 H 8 N 2 ) y Fe 2 Se 2 中以空穴载流子为主,这表明温度引起的结构畸变可能导致费米面拓扑结构的重构和空穴袋的出现。
摘要:我们建议使用计算机视觉对上肢外骨骼进行自适应半自治控制,以帮助患有严重四方的用户增加独立性和生活质量。将基于舌的界面与半自主控制一起使用,因此,尽管从颈部瘫痪,但具有完全四倍体的人能够使用它。半自主控制使用计算机视觉来检测附近的物体,并估算如何掌握它们以帮助用户控制外骨骼。测试了三个控制方案:非自主(即使用舌头的手动控制)对照,半自主控制具有固定自治水平的,以及具有基于结合的适应性自治水平的半自主控制。进行了有或没有四肽的实验参与者的研究。根据其性能,对控制方案进行了评估,例如完成给定任务所需的时间和命令数以及用户的评分。研究表明,当使用任何一种半自主控制方案时,性能和用户评分都有明显的改善。自适应半自主控制在某些情况下,在更复杂的任务中,在使用该系统方面进行了更多培训的用户,在某些情况下,固定版本优于固定版本。
摘要中枢神经系统相关的恶性肿瘤,胶质母细胞瘤(GBM)是最常见的,死亡率最高。GBM细胞类型的高异质性和复杂的肿瘤微环境经常导致替莫唑胺治疗的患者的肿瘤复发和突然复发。在精确医学中,对GBM治疗的研究越来越集中于分子亚型,以精确表征细胞和分子异质性,以及GBM对治疗的难治性。对GBM亚型不同分子表达模式的深刻理解至关重要。研究人员最近提出了用于检测GBM分子亚型的四方分数或三方方法。GBM的各种分子亚型在基因表达模式和生物学行为上显示出显着差异。这些亚型在调节途径,癌基因表达,肿瘤微环境改变以及对标准疗法的差异反应中也表现出很高的可塑性。在此,我们总结了GBM的当前分子分型方案以及每个亚型的主要分子/遗传特征。此外,我们在各种调节剂下回顾了GBM的间充质转变机制。关键词胶质母细胞瘤;分子表型;分类;特征;间充质转变
摘要中枢神经系统相关的恶性肿瘤,胶质母细胞瘤(GBM)是最常见的,死亡率最高。GBM细胞类型的高异质性和复杂的肿瘤微环境经常导致替莫唑胺治疗的患者的肿瘤复发和突然复发。在精确医学中,对GBM治疗的研究越来越集中于分子亚型,以精确表征细胞和分子异质性,以及GBM对治疗的难治性。对GBM亚型不同分子表达模式的深刻理解至关重要。研究人员最近提出了用于检测GBM分子亚型的四方分数或三方方法。GBM的各种分子亚型在基因表达模式和生物学行为上显示出显着差异。这些亚型在调节途径,癌基因表达,肿瘤微环境改变以及对标准疗法的差异反应中也表现出很高的可塑性。在此,我们总结了GBM的当前分子分型方案以及每个亚型的主要分子/遗传特征。此外,我们在各种调节剂下回顾了GBM的间充质转变机制。关键词胶质母细胞瘤;分子表型;分类;特征;间充质转变
摘要:根据美国劳工统计局的数据,2010 年至 2020 年,建筑和工程专业毕业生的需求继续以超过 10% 的速度增长。这一需求是基于人口增长、环境问题和经验丰富的劳动力退休。为了满足这一需求,我们制定了多项 STEM 计划,以激发各个年级的年轻一代对工程职业的好处的兴趣。这些计划包括 FIRST FRC 和 Lego Leagues、ISEF、ROBAFIS 和各种本地机器人完成等计划。INCOSE 学术事务支持这些计划和学生部门计划,旨在向大学生介绍系统工程和 INCOSE 会员的好处。学生部门最近获得了大学生入学人数的大幅增加,这是由于在本科工程课程早期注入了“系统思维”,使用 INCOSE 系统工程手册 (SEH) 作为参考,同时提供 ASEP 认证培训,为毕业生在求职时提供简历鉴别器。在 INCOSE 国际研讨会上举行的最近一次学生分部研讨会确定了四方利益模型利益相关者的额外价值主张,以建立和维持学生分部和 INCOSE 成员资格。本次演讲和研讨会将展示反映工程需求的关键统计数据、结果
使用安装在 J-PARC 材料与生命科学实验设施的单晶衍射仪 SENJU (BL18) 和超高分辨率粉末衍射仪 SuperHRPD (BL08) 收集飞行时间中子衍射数据。如图 1(a) 所示,在 MASnBr 3 的五个相中观察到的衍射图案彼此明显不同,表明晶体结构通过四个相变依次变化。该结果需要重新考虑 g、d 和 e 相的结构,其中 b - g 相和 d – e 相之间没有观察到明显的结构变化[1]。对于 MASnI 3 ,如先前报道的那样[2][3],识别出三个具有不同结构的相(图 1(b))。最低温相的结构仍然不确定,但 b 相和 g 相之间衍射图案的剧烈变化表明结构对称性从四方晶系到三斜晶系显著降低。立方a相单晶结构分析表明MA分子的质心位于立方晶胞中心之外,用最大熵法合成的分子核密度沿立方轴呈现各向异性分布。这些趋势在MASnBr 3 中表现得更为明显,表明X = Br晶体中有机-无机相互作用的影响更强。