K t = 电机扭矩系数,单位为 N m/amp K e = 电机反电动势系数,单位为 V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,单位为 kg m2 D r = 转子(螺旋桨)直径,单位为 m ρ = 空气密度,单位为 kg/m3 T = 螺旋桨推力,NQ = 螺旋桨扭矩,单位为 N m CT = 螺旋桨推力常数 CP = 螺旋桨功率常数 Ixx 、I yy 、Izz = 无人机惯性矩,单位为 kg m2 m = 无人机质量,单位为 kg L x 、L y = 从 CG 到电机的力矩臂,单位为 m ω x 、ω y 、ω z = 机身轴旋转速度,单位为 rad/s ψ、θ、φ = 惯性轴到机身的欧拉角,单位为 rad ux 、uy 、uz =感知位置处的体轴速度 ux cg , uy cg , uz cg = 重心处的体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
K t = 电机扭矩系数,N m/amp K e = 电机反电动势系数,V/(rad/s) V batt = 电池电压,伏特 R tt = 电机电阻(端子到端子),欧姆 J m = 电机和螺旋桨惯性,kg m2 D r = 转子(螺旋桨)直径,米 ρ = 空气密度,kg/m3 T = 螺旋桨推力,N Q = 螺旋桨扭矩,N m C T = 螺旋桨推力常数 C P = 螺旋桨功率常数 Ixx ,I yy ,Izz = 无人机惯性矩,kg m2 m = 无人机质量,kg L x ,L y = 从 CG 到电机的力臂,米 ω x ,ω y ,ω z = 机身轴旋转速度,弧度/秒 ψ,θ,φ = 惯性轴到机身的欧拉角,弧度 u x ,u y , u z = 感测位置处的身体轴速度 u x cg , u y cg , u z cg = 重心处的身体轴速度 ω m = 电机速度,rad/s T d = 硬件更新延迟,惯性测量单元 (IMU) T d 2 = 硬件更新延迟,OptiTrack 反馈 CG = 重心 z cg = OptiTrack 传感器测量点下方的垂直重心距离 G 输出输入 = 从输入到输出的传递函数
智能模式 无人机支持多种智能模式,操作便捷,包括航线飞行、航点飞行、绕圈飞行(兴趣点)、方向锁定模式。无人机可自动起飞并启用智能模式,按照预设的航线/航点和兴趣点飞行。任务完成后,无人机将自动返回基地并降落。
摘要:本文旨在探讨四旋翼无人机的建模与控制方法。建模过程中采用机构建模与实验测试相结合的方式,特别对电机和螺旋桨进行了详细的建模。通过对四旋翼无人机机体结构和飞行原理的了解,采用牛顿-欧拉法对四旋翼无人机进行动力学分析,建立了小角度转动下的无人机数学模型。采用过程辨识器(PID)对其进行控制。首先采用PID控制模型的姿态角,在此基础上采用PID控制各个方向上的速度。然后,利用MATLAB对重心偏移的四旋翼飞行器的PID控制进行仿真。结果表明:在重心不发生偏移的情况下,俯仰角和滚转角可以共同控制5°,PID可以有效地控制控制量,并在较短的时间内达到预期的效果。对经典BP算法、经典GA-BP算法、改进GA-BP算法分别进行了训练,共150组训练数据,训练函数采用Levenberg-Marquardt(trainlm),性能函数采用均方误差(MSE)。在同样噪声的背景下,改进GA-BP算法的检测率最高,经典GA-BP算法次之,经典BP算法最低。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体靠近飞行器。在这些条件下,飞行会受到空气动力学相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。由于现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路,因此开发用于描述此类相互作用的有效计算方法仍有待改进。本研究假设,通过一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
我们要感谢 Michael A. Demetriou 教授和 David J. Olinger 教授给予我们参与该项目的机会。他们在整个过程中的持续指导和支持为我们提供了必要的方向和动力,让我们能够坚持到最后。我们还要感谢 Alex Camilo 设计和构建我们的机载电子套件。我们要感谢 Adriana Hera、Raffaele Potami 和 Kimon Simeonidis 协助和指导我们开发 matlab 工具以及设置和开展校准实验。此外,我们还要感谢 John Blandino 教授、Roger Steele 和化学系对我们设备需求的帮助。此外,我们还要感谢 Neil Whitehouse 在制造项目所需组件方面提供的持续支持和指导。
我们要感谢 Michael A. Demetriou 教授和 David J. Olinger 教授给予我们参与该项目的机会。他们在整个过程中的持续指导和支持为我们提供了必要的方向和动力,让我们能够坚持到最后。我们还要感谢 Alex Camilo 设计和构建我们的机载电子套件。我们要感谢 Adriana Hera、Raffaele Potami 和 Kimon Simeonidis 协助和指导我们开发 matlab 工具以及设置和开展校准实验。此外,我们还要感谢 John Blandino 教授、Roger Steele 和化学系对我们设备需求的帮助。此外,我们还要感谢 Neil Whitehouse 在制造项目所需组件方面提供的持续支持和指导。
在本文中,我们使用非线性滑模控制方法处理四旋翼飞行器的稳定和跟踪问题。首先,借助牛顿-欧拉形式,提出了四旋翼飞行器的动态非线性模型,其中考虑了不同的物理现象和气动力及力矩。然后基于 Lyapunov 理论设计滑模控制器来稳定和跟踪四旋翼飞行器的姿态和位置。进行了几次模拟结果,以显示所提出的建模和非线性控制方法的有效性。即将进行的工作将使用基于元启发式的方法调整和优化所有 SMC 参数。此外,还将研究设计的 SMC 方法的硬件在环 (HIL) 联合仿真。
无人机在民用领域的应用越来越广泛。四轴飞行器是一种经过广泛研究的无人机,是新型控制技术的绝佳试验台。四轴飞行器的一些预期用途需要在受限环境中运行,其中物体与飞行器距离很近。在这些条件下,飞行会受到气动相互作用(力和扭矩)的影响。直观地讲,这些相互作用可以看作是气流从周围环境中反弹回飞行器。开发用于描述此类相互作用的有效计算方法仍有待改进,因为现有的精确模型需要大量的计算负荷,并且不能用于四旋翼飞行器的实时控制回路。这项研究假设,使用一个可以实时部署并近似气动相互作用行为的简化数学模型,可以改善四旋翼飞行器的飞行控制。为了证实这一假设,我们的目标是开发一种有效的气动相互作用模型,该模型可以从模拟和实验数据中检索出来。为解决这个问题,我们将探索三个主要知识领域:控制理论、人工智能和流体力学。作为初步进展,我们提出了非线性四旋翼控制的数值优化技术。
摘要 本文介绍了一种实验性倾转旋翼飞机的建模、控制和硬件实现。这种飞行器通过倾斜四个旋翼,将传统飞机的高速巡航能力与直升机的悬停能力结合起来。空中在巡航和悬停飞行模式之间切换称为过渡。使用牛顿方法推导出该飞行器的垂直和水平飞行模式的动态模型。提出并在模拟层面评估了一种非线性控制策略,以控制飞行器在纵向平面上的垂直和水平飞行动力学。开发了一架实验性的四平面飞机来进行垂直飞行。设计并构建了一种基于 DSP 的低成本嵌入式飞行控制系统 (EFCS),以实现自主姿态稳定飞行。