在人类中,大量研究指出癌症(造血系统、肝癌、膀胱、肺癌、食道)与吸入四氯乙烯暴露之间可能存在关联,但人口数量有限,超额风险仍然较弱。可能存在偏差;因果关系不成立。只有与膀胱癌发生的关联性似乎已成为共识。口服暴露的观察结果很多,但由于经常同时暴露于其他物质,解释有限。
使用了配备火焰电离检测器的Perkin-Elmer气相色谱模型F 30。注射器温度保持在150°C下,在200°C的流速下,检测器温度为20 ml/min氮(载气),30 mL/min氢和70 mL/min/min氧。不锈钢柱(1.8 m x 3 mm 1。D.)在545,60-100网地上挤满了15%的Apiezon M。该色谱柱被编程为温度:最初,在90°C下为7分钟;然后以1°C/min的速度进行编程,90°C至98°C;最后,在98°C下6分钟。使用Perkin-Elrner GC数据系统PEP 1。
在人类中,许多研究指出癌症(造血系统、肝脏、膀胱、肺部、食道)与吸入四氯乙烯之间可能存在联系,但人口规模有限,超额风险仍然很低。可能存在偏见;因果关系不成立。只有与膀胱癌发生的关联似乎已达成共识。对于口服暴露的观察有很多,但由于经常与其他物质同时暴露,因此解释有限。
美国环境保护署 (EPA) 正在与美国国防部 (DOD) 合作,探讨用环保清洁技术替代传统干洗溶剂(尤其是用于清洁军服组件的主要工艺——四氯乙烯)的可行性。总体目标是减少军事人员在军事设施中接触危险化学品的机会,并降低与传统干洗溶剂的储存、运输和处理相关的成本。目前正在评估使用湿洗和液态二氧化碳清洁标准军服。这项研究将来可能会扩大到包括其他新的清洁工艺。这项研究是国防后勤局费城国防供应中心更广泛的污染预防和废物最小化计划的一部分,旨在减少对人类健康和环境有潜在危害的化学品的使用。
B. 之前在场地建筑物下方以及场地院内建筑物北面和南面进行的土壤采样结果表明,场地土壤中砷、铬、铅、镍、铜、乙苯、萘、四氯乙烯、三氯乙烯、二氯乙烯和氯乙烯的浓度升高。源区土壤中的铬(高达 16,000 ppm)、铜(高达 50,000 ppm)、铅(高达 54,000 ppm)、镍(高达 11,000 ppm)和三氯乙烯(高达 830 ppm)的浓度预计超过危险废物分类的毒性特征。场地压力计和监测井中的地下水采样结果表明,场地地下水中铬、铅、镍、二氯乙烯、三氯乙烯和氯乙烯的浓度升高。工程师办公室可应要求查阅与现场或现场地下危险物质的身份、位置、数量、性质或特征相关的其他文件和可用信息。工程师和西阿利斯市对其准确性或完整性不承担任何责任,所有此类文件和信息仍归西阿利斯市所有。
计划对长期停运的卡皮西亚地热二元发电厂(使用四氯乙烯)进行大修 Clint Kombe ZESCO Limited Great East Road,展位号 6949 P.O. Box 33304,卢萨卡 赞比亚 ckombe@zesco.co.zm 摘要 在赞比亚,一座小型试点地热 Turboden 二元发电厂已经建成,但长期处于停运状态。该工厂已指定进行翻新,以改善盐水资源并提高机电设备的容量。随着资源评估的进行和工厂地面设施状况的评估,该工厂将在设备大修后投入运营。本研究考察了地热环境下非运行和运行工厂系统状态下的实际和潜在检修要求。评估表明,可以进行基于条件的设备检修,结合系统中潜在的设备改进以提高性能。考虑到冰岛的 Svartsengi Ormat 二元工厂标准、运行经验和原始设备制造商的建议,提出了基准运行可靠性维护策略。将地热电能作为首选绿色能源需要增加勘探、钻探和工厂建设费用,同时还要确保工厂维护和管理的有效可靠性
1,2,3-TCP 1,2,3-三氯丙烷法案 城市水资源管理规划法案 ADU 附属住宅单元 AF 英亩英尺 AFY 英亩英尺/年 AMI 先进计量基础设施 AWTF 先进水处理设施 BMP 最佳管理实践 CBI 清洁海滩计划 CIS 沿海截流下水道 CRA 科罗拉多河渡槽 CTC 四氯化碳 DCUs 数据收集器单元 DDW 饮用水部门 DRA 干旱风险评估 DWR 加州水资源部 GAC 颗粒活性炭 GLAC IRWM 大洛杉矶县综合区域水资源管理 GPCD 人均每日加仑数 GPF 每次冲水加仑数 GRRP 地下水补给再利用项目 GSA 地下水可持续发展机构 GSP 地下水可持续发展计划 MAF 百万英亩英尺 MG 百万加仑 MGD 百万加仑/天 MOU 谅解备忘录 MTBE 甲基叔丁基醚 MTUs 仪表传输单位 MWD 南加州都会水务区 NAICS 北美行业分类系统 NRC 国家资源委员会 PCE 四氯乙烯 RHNA 区域住房需求评估 RO 反渗透 SBX7-7 参议院法案 X7-7,2009 年水资源保护法案 SCAG 南加州政府协会 SGMA 可持续地下水管理法案 SMBGSA 圣莫尼卡盆地地下水可持续发展机构
首字母缩略词和缩写 Σ 总和 µg 微克 AVS 酸性挥发性硫化物 BHC 六氯苯 BMP 最佳管理实践 BOD 生化需氧量 CAM 加州评估手册 COC 监管链 COD 化学需氧量 COP 加州海洋计划 CTR 加州有毒物质规则 DDD 二氯二苯二氯乙烷 DDE 二氯二苯二氯乙烯 DDT 二氯二苯三氯乙烷 DO 溶解氧 DOC 溶解有机碳 ID 标识 IDW 反距离加权 LARWQCB 洛杉矶区域水控制委员会 MDL 方法检测限 MdRH 马里纳德尔雷港 MPN 最可能数 NDMA N-亚硝基二甲胺 NDPA N-亚硝基二正丙胺 NTU 散射浊度单位 PAH 多环芳烃 PCB 多氯联苯 PCE 四氯乙烯 pH 氢离子浓度 Q-PCR 定量聚合酶链反应 QA 质量保证 QC 质量控制 SAP 采样和分析计划 SEM 同时萃取金属 SM 标准方法 STLC 可溶性阈值极限浓度 SVOC 半挥发性有机碳 SWRCB 州水资源控制委员会 TCLP 毒性特性 浸出程序 TDS 总溶解固体 TKN 总凯氏氮 TMDL 总最大日负荷 TOC 总有机碳 TPH 总石油烃 TSS 总悬浮固体 TTLC 总阈值极限浓度 USEPA 美国环境保护署 VOC 挥发性有机碳 WET 废物提取测试 WQO 水质目标
加工Vinnol®H15/45 m(可再生能量)通常以溶解形式使用。酮和酯是Vinnol®H15/45 m(可再生能量)最常用的溶剂,酮比酯更有效。是真正的溶剂,而三氯乙烯和四氯乙烯仅具有溶胀效应。醇和脂肪液碳氢化合物不会溶解Vinnol®H15/45 m(可再生能量)。芳香烃可以与真实溶剂合并到有限的程度上。vinnol®H15/45 m(可再生能量)可以用单体和聚合物增塑剂(例如邻苯二甲酸盐,脂肪酸盐,sebacates,柠檬酸盐,柠檬酸盐,磷酸盐,环氧化物和氯氧化物氧化物)塑化。vinnol®H15/45 m(可再生能源)与所有其他Vinnol®表面涂层树脂完全兼容。它也与许多丙烯酸聚合物和酮树脂以及一些环氧化物结合在一起。醇酸树脂,硝酸纤维素,聚乙烯基乙酸酯和聚乙烯基丁烷通常与Vinnol®H15/45 m(可再生能量)不相容。我们建议始终检查Vinnol®H15/45 m(可再生能量)与相关聚合物的兼容性。必须在初步测试中检查Vinnol®H15/45 m(可再生能量)与颜料或着色剂的兼容性。某些颜料/着色剂可能会产生触变作用和/或损害粘附。使用含有锌或镉的颜料时必须注意,因为它们会在温度升高时催化VC共聚物的分解。也适用于铁氧化物色素。尽管固有的稳定性良好,但某些应用必须根据Vinnol®H15/45 m(可再生能量)稳定涂层,以针对热和/或紫外线进行稳定。环氧化合物通常足以稳定这些涂层,以防止低热撞击。涉及较高温度的地方,建议使用钙/锌或有机素稳定剂。户外应用需要额外使用紫外线稳定器以及针对这些条件优化的热稳定器。为了避免出现变色的风险,应在制备溶液和随后的产品存储期间避免与铁接触。vinnol®基于表面涂料化合物应存储在涂层容器中。
