发生火灾时应采取的补救措施 a. 必须始终严格遵守以下预防措施: 1. 安装前用干净的三色乙烯 (TCE) /四氯化碳 (CTC) 彻底清洗所有氧气配件、阀门和零件。切勿将汽油、煤油或其他碳氢化合物溶剂用于此目的。用于氧气服务的所有管道、管线阀门等必须是认可的类型,并且在投入使用前必须彻底除油并用干净无油的压缩空气或氮气吹净。 2. 禁止在工厂进气口附近释放乙炔或其他易燃气体。液氧中乙炔浓度超过百万分之五时可能会发生剧烈爆炸。必须严格监督以将污染的可能性降至最低。 3. 工厂和工厂附近必须始终保持清洁,不得有任何异物。工厂周围任何漏油情况必须立即纠正。必须立即用抹布和四氯化碳清理漏油。4. 请勿用油或任何其他物质润滑氧气阀门、调节器、仪表或配件。5. 确保从空气分离器夹套上拆下的绝缘层没有被油或其他易燃材料污染。对空气分离装置设备进行维护的人员必须穿着干净的工作服,手和工具必须没有油。这可确保绝缘层和设备
2.3.3 通过二氯甲烷氢氟化生产 HFC-32 的过程中 HFC-23 的电子氟化 ...................................................................................................................................... 44 2.3.4 烷烃的电子氟化和 HFC-23 的副产品 ............................................................................................................................. 45 2.3.5 在生产受控物质过程中产生 HFC-23 副产品的其他可能途径 ............................................................................................. 46 2.3.6 HFC-125 工厂的 CFC-113、CFC-114、CFC-115 副产品 ............................................................................................. 46 2.4 生产附件 A 至 F 所列物质的中间体 ............................................................................................................. 48 2.5生产排放及其减缓措施 ................................................................................................................ 50 2.5.1 产品、联产品、中间体和原料的排放 ................................................................................ 50 2.5.2 不需要的副产品的排放 ................................................................................................ 51 2.5.3 排放监测 ................................................................................................................ 51 2.5.4 排放报告 ................................................................................................................ 52 2.5.5 生产、分销和用作受控物质原料的排放因子 ............................................................. 52 2.5.6 生产、分销和原料使用过程中受控物质的估算排放量 ............................................................. 57 2.6 受控物质的库存 ................................................................................................................ 58 2.7 与化学工业部门相关的一些问题 .............................................................................................. 58 2.7.1 非法贸易 ...................................................................................................................... 58 2.7.2 专利 ............................................................................................................................. 59 2.7.3 向低全球升温潜能值 HCFO 和 HFO 过渡过程中的生产和化学品供应问题 ............................................................................................................. 60 2.7.4 PFAS 和 TFA 前体物质 ............................................................................................................. 60 2.8 四氯化碳 ............................................................................................................................. 63 2.8.1 摘要 ............................................................................................................................. 63 2.8.2 引言........................................................................................... 64 2.8.3 CTC 生产路线 .............................................................................................. 64 2.8.4 CTC 生产和排放 ........................................................................................................ 66 2.8.5 四氯化碳的运输 .......................................................................................................... 70 2.8.6 四氯化碳作为原料的前景 .......................................................................................... 71 2.8.7 四氯化碳的其他来源:乙烯基链 ...................................................................................... 71 2.9 CFC-11 生产的最新情况 ............................................................................................. 72 2.10 极短寿命物质 ............................................................................................................. 73 2.10.1 摘要 ...................................................................................................................... 74 2.10.2 极短寿命物质(VSLS)的背景 ............................................................................. 75 2.10.3 二氯甲烷(DCM)和氯仿(CFM)的生产和使用 ................ ... 2.10.4 二氯甲烷 ...................................................................................................... 78 2.10.5 氯仿 .............................................................................................................. 82 2.10.6 关于二氯甲烷和氯仿的结论 ............................................................................ 83 2.10.7 二氯乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S..................................................................................... 93.................................................................................................. 78 2.10.5 氯仿 ................................................................................................................ 82 2.10.6 关于二氯甲烷和氯仿的结论 ................................................................................ 83 2.10.7 二氯化乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S ................................................................................ 93.................................................................................................. 78 2.10.5 氯仿 ................................................................................................................ 82 2.10.6 关于二氯甲烷和氯仿的结论 ................................................................................ 83 2.10.7 二氯化乙烯 (EDC) ...................................................................................................... 84 2.10.8 三氯乙烯 (TCE) ...................................................................................................... 85 2.10.9 全氯乙烯 (PCE) ...................................................................................................... 86 2.11 对第 XXIX/12 号决定的回应:未列入附件 F 的 HFC S ............................................................. 91 2.11.1 编制附件 F 中的 HFC S 清单 ................................................................................ 92 2.11.2 未列入附件 F 的 HFC S ................................................................................ 93
•超过了35%的HCFC(氢氟氟化合物)阶段淘汰目标。o从2020年基线实现了44%。•消除了HCFC 141b。o HCFC被用作制冷剂,用于生产新设备。o HCFC 141b,用作刚性聚氨酯泡沫生产的吹剂。•在蒙特利尔协议计划(2030年)之前,还将完全在2024年12月O之前逐步使用HCFC。•印度实施蒙特利尔协议的其他成就o逐步消除了CFC,四氯化碳,HALONS等。用于受控用途。o HFCS淘汰管理计划(HPMP)阶段 - II目前正在2017年(到2024年)。o印度冷却行动计划(ICAP)旨在减少冷却需求,制冷剂过渡,提高能源效率并在2037 - 38年之前采用更好的技术选择。
奥尔巴尼的前CCC谷物存储设施是CCC用于存储剩余谷物的众多临时设施之一,作为1940年代始于1940年代的谷物垃圾箱计划的一部分。在存储期间,有时需要熏蒸谷物以控制破坏性害虫。当时最常见的熏蒸剂是80%四氯化碳(CTC)和20%二硫化物的混合物。将混合物直接从存储箱的顶部直接施加到谷物上,并允许在整个垃圾箱中分散。谷物垃圾箱计划于1970年代初终止,此时CCC出售了所有现有的谷物存储箱和设备。在奥尔巴尼(Albany)现场,CCC从1950年代到1970年代初期经营谷物存储设施,直至与财产所有人一起使用五年租赁。在CCC租用该财产的时间里,大约有30至40粒垃圾箱和两个Quonset小屋现场。目前,该站点由一个Quonset小屋,一个混凝土垫(以前的Quonset Hut)和12个圆柱谷物存储箱组成。
2W/3W 两轮或三轮车 ACC 先进电池化学 AI 人工智能 Al2O3 氧化铝 BESS 电池储能系统 BEV 电池电动汽车 BMS 电池管理软件 CAES 压缩空气储能 CAGR 复合年增长率 CCl4 四氯化碳 CERT 能源研究与技术委员会 CES 化学储能 CO2 二氧化碳 CSIR 科学与工业研究理事会 CSIRO 联邦科学与工业研究组织 D&D 开发与演示 DNi 直接镍工艺 DT 数字孪生 EC 电化学 EcES 电化学储能系统 EC 电化学元件 EES 电储能系统 EHS 环境与健康安全 ES 储能 ESS 储能系统 ETIP 欧洲技术与创新计划 ETWG 能源转型工作组 EU 欧盟 EV 电动汽车 FCAS 频率控制辅助服务 FES 飞轮储能 GES 重力储能 GHG 温室气体 GW 吉瓦 GWh 吉瓦时 HDV 重型车辆 HTP 人体毒性潜力 ICE 内燃机 IEA 国际能源署 IP 知识产权 IRENA 国际可再生能源机构kT 千吨 kWh 千瓦时 LCO 钴酸锂 LCOS 平准化储能成本 LDV 轻型汽车 LFP 磷酸铁锂 Li 锂金属 Li 离子 锂离子 Li-O2 锂金属空气 Li-S 锂硫
1,2,3-TCP 1,2,3-三氯丙烷法案 城市水资源管理规划法案 ADU 附属住宅单元 AF 英亩英尺 AFY 英亩英尺/年 AMI 先进计量基础设施 AWTF 先进水处理设施 BMP 最佳管理实践 CBI 清洁海滩计划 CIS 沿海截流下水道 CRA 科罗拉多河渡槽 CTC 四氯化碳 DCUs 数据收集器单元 DDW 饮用水部门 DRA 干旱风险评估 DWR 加州水资源部 GAC 颗粒活性炭 GLAC IRWM 大洛杉矶县综合区域水资源管理 GPCD 人均每日加仑数 GPF 每次冲水加仑数 GRRP 地下水补给再利用项目 GSA 地下水可持续发展机构 GSP 地下水可持续发展计划 MAF 百万英亩英尺 MG 百万加仑 MGD 百万加仑/天 MOU 谅解备忘录 MTBE 甲基叔丁基醚 MTUs 仪表传输单位 MWD 南加州都会水务区 NAICS 北美行业分类系统 NRC 国家资源委员会 PCE 四氯乙烯 RHNA 区域住房需求评估 RO 反渗透 SBX7-7 参议院法案 X7-7,2009 年水资源保护法案 SCAG 南加州政府协会 SGMA 可持续地下水管理法案 SMBGSA 圣莫尼卡盆地地下水可持续发展机构
(2024 年 6 月 22 日收到;2024 年 10 月 27 日修订;2024 年 11 月 6 日接受)摘要。醌具有高氧化还原电位,使其适用于有机氧化还原液流电池。它们在充电过程中的氧化和放电涉及两个可逆的电子转移反应。本研究利用密度泛函理论 (DFT) 与 B3LYP 函数和 6-31G(d) 基组来计算苯醌 (BQ) 的第一和第二还原电位。通过添加电子给体取代基 (-NHCH 3 、-NH 2 、-OCH 3 、-NHCOCH 3 、-OCOCH 3 ) 生成各种 BQ 衍生物。通用溶剂化模型 (SMD) 评估了溶剂效应,而锂盐、溶剂化自由能和 HOMO-LUMO 能量影响还原电位。 -OCOCH₃ 取代的 BQ 显示出最高的第一和第二氧化还原电位,分别为 2.81 V 和 2.27 V。添加三氟化硼 (BF 3 ) 盐可将这些电位升高到 3.99 V 和 3.84 V。在三种溶剂中检查了 BQ 及其衍生物的电化学行为:四氯化碳 (CCl₄)、乙腈 (ACN) 和水 (H₂O)。这些溶剂中的平均还原电位遵循 CCl₄ < ACN < H₂O 的趋势,其中水由于其氢键和极性而最有效。这些发现强调了溶剂特性对电化学过程的重大影响。关键词:苯醌衍生物、DFT、电子亲和力、还原电位、氧化还原液流电池、溶剂化自由能、SMD 溶剂化模型
摘要 核苷酸结合寡聚化结构域 2 (NOD2) 是一种公认的先天免疫传感器,可启动针对病原体的强大免疫反应。据报道,许多先天免疫传感器在致癌作用中起着重要作用。然而,NOD2 在癌症中的作用尚不清楚。在这里,我们研究了 NOD2 在肝细胞癌 (HCC) 发展中的作用。我们证明 NOD2 缺乏会促进 N-亚硝基二乙胺 (DEN)/四氯化碳 (CCl 4 ) 诱导的 HCC 小鼠模型和异种移植肿瘤模型中的肝癌发生。体外研究表明,NOD2 充当肿瘤抑制因子并抑制 HCC 细胞的增殖、集落形成和侵袭。临床研究表明,在临床 HCC 组织中 NOD2 表达完全丧失或显著下调,并且 NOD2 表达的丧失与晚期疾病分期显着相关。进一步研究表明,NOD2 通过激活 5′-腺苷酸 (AMP) 活化蛋白激酶 (AMPK) 信号通路发挥其抗肿瘤作用,并且 NOD2 通过激活 AMPK 通路诱导细胞凋亡,显著增强 HCC 细胞对索拉非尼、仑伐替尼和 5-FU 治疗的敏感性。此外,我们还证明 NOD2 通过直接与 AMPK α -LKB1 复合物结合激活 AMPK 通路,从而导致自噬介导的 HCC 细胞凋亡。总之,这项研究表明 NOD2 通过直接激活 AMPK 通路在 HCC 细胞中充当肿瘤抑制因子和化疗调节剂,这表明通过上调 NOD2-AMPK 信号轴来治疗 HCC 是一种潜在的治疗策略。
摘要:肾素 - 血管紧张素 - 醛固酮系统由于其作为肝纤维化和肝星状细胞(HSC)激活的作用而引起了人们的关注。同时,包括心房NP(ANP)和C型NP(CNP)在内的亚替肽(NP)系统是由Neprilysin调节的反调节激素。尽管血管紧张素受体和Neprilysin抑制剂(Sacubitril/valsartan:SAC/Val)的组合已显示出心力衰竭患者的临床效率,但其对肝纤维炎的潜在影响尚未得到明显影响。这项研究评估了SAC/Val在四氯化碳(CCL 4)诱导的鼠肝纤维化以及HSC的体外表型中的影响。用SAC和Val处理明显减弱CCL 4诱导的肝纤维化,同时减少α -SMA + -HSC膨胀,并降低肝羟基丙烯酸甲基丙烯酸酯和mRNA水平。用SAC治疗CCL 4处理的小鼠中的血浆ANP和CNP水平增加了,ANP通过激活鸟烯基环酸基酶-A/CGMP/CGMP/蛋白质激酶G信号来有效地抑制LX-2细胞中TGF-β刺激的MMP2和TIMP2表达。同时,CNP不影响LX-2细胞的核活性。此外,VAL直接抑制血管紧张素II(AT-II)刺激的细胞增殖,以及TIMP1和CTGF的表达,通过AT-II型1型受体/蛋白激酶C途径的阻断。总体而言,SAC/VAL可能是一种新型的肝脏纤维化治疗方法。
抽象的目标靶向肝硬化中细菌易位仅限于具有抗菌抗性风险的抗生素。这项研究探索了不可吸收,肠道限制的,工程化的碳珠吸附剂的治疗潜力,YAQ-001在肝硬化模型和急性 - 慢性肝衰竭(ACLF)模型中,以及在Cirrhosis的临床试验中的安全性和可耐受性。在体外评估了YAQ-001的设计性能。肝硬化和ACLF的两鼠模型(4周,带有或不含脂多糖的胆管连接),接受YAQ-001 2周;研究了6周接受YAQ-001的肝硬化(6周和12周碳四氯化碳(CCL4))的两种小鼠模型。器官和免疫功能,肠道通透性,转录组学,微生物组组成和代谢组学。在肠道器官上评估了粪便水对动物模型肠道通透性的影响。进行了28例肝硬化患者的多中心,双盲,随机,安慰剂控制的临床试验,用于3个月的4 gr/天YAQ-001。结果YAQ-001表现出内毒素的快速吸附动力学。体内,YAQ-001降低了肝损伤,纤维化的进展,门静脉高血压,肾功能障碍和ACLF动物的死亡率显着。对内毒素毒素严重性,多肌血症,肝细胞死亡,全身性炎症和器官转录组学的严重影响,观察到肝,肾脏,脑,大脑和结肠的炎症,细胞死亡和衰老的可变调节。YAQ-001在临床试验中被调节为设备的安全性和耐受性的主要终点。YAQ-001降低了器官中的肠道渗透性,并对微生物组组成和代谢产生了积极影响。结论本研究为肝硬化患者提供了强烈的临床前原理和安全性,以允许临床翻译试验登记编号NCT03202498