引言:压缩光是一种光学状态,其中一阶正交的涨落被抑制在散粒噪声极限 (SNL) 以下 [1–9]。随着越来越多的光学技术跨越量子领域,压缩光已成为量子光学和量子信息领域的重要资源。压缩态已成功应用于连续变量量子通信协议 [10–12] 和提高光学传感器 [13](包括引力波探测器 [14])的性能。基于各种非线性材料,已经开发出许多产生压缩光的方法 [3, 9]。常见的是利用非线性晶体中的参量下转换 [1, 2, 15],尽管基于偏振自旋效应 [16–20] 和四波混频 [21–25] 的原子源也在研究中。压缩光的检测通常采用以下三种方式之一:直接强度检测或光子计数(仅适用于强度压缩光)、使用相移腔[3],以及迄今为止这三种方式中最常见的通过用经典本振拍打压缩光场的同差或异差检测。在本信中,我们介绍了一种技术,该技术使我们能够使用 CCD 相机表征位移压缩真空态中的压缩参数,而无需使用相关检测。我们证明压缩量可以从每像素光子统计的一阶和二阶矩推导出来,其精度与同差检测相似。同时,所提出的方法可能特别有利于压缩增强光学成像[26,27]。方法:—我们将强泵浦与压缩真空光混合| ξ ⟩ 在不平衡光束分光器处,反射率 θ << 1,用于泵浦场。泵浦是一个相干
集成硅光子学凭借其可扩展、高保真度的CMOS制造工艺,以及在标准电信波长下工作的能力,成为量子光子技术的主要候选平台[1,2]。难以区分的相关光子对源是此类平台支持量子网络和信息处理的基本构建模块[1]。当通过自发四波混频 (SFWM) 产生双光子时,最大的挑战是将单光子输出与强的经典泵浦场隔离开来[3]。此前,我们展示了CMOS平台中的第一个光子对源[4],以及第一个在单个芯片上集成SFWM 腔和泵浦抑制滤波器的源[5],无需额外的外部泵浦滤波。该全无源器件采用级联阵列,每个波长间隔开微环 SFWM 源,当出现制造差异时,可确保一个源环与基于微环的高阶泵浦抑制滤波器对齐。然而,这种无源设计阻止将此类集成源的多个副本调整到同一波长。在本文中,我们介绍了一种基于微环的源和基于热可调环的集成泵浦抑制滤波器。这消除了源阵列,将设备占用空间减半,并能够在 CMOS 光子学平台上实现和控制多个此类源之间的量子干涉。该设计还包括一个基于我们的双层单向设计 [ 6 ] 的 1550 nm 新型光栅耦合器设计,模拟了 ∼ 1 dB 的光纤到芯片耦合损耗。源电路[图 4] 。 1 (a)]由一个可调微环谐振器SFWM对发生器腔和一个由四个级联的二阶滤波器形成的可调8极带通滤波器组成,占用460×220μm的整体芯片面积,包括
量子信息科学正处于变革的十字路口,即将彻底改变计算、密码学、通信、网络、计量、传感和成像等多个领域。在各种量子系统中,光子量子比特和中性原子是这场量子革命的关键催化剂。本演讲探讨了这些平台的协同融合,重点是通过相干原子集合中的自发四波混频 (SFWM) 开创窄带纠缠双光子源 [1,2]。值得注意的是,我们最近取得了一项独特的成就,首次通过热原子蒸汽中的自发六波混频 (SSWM) 创建了可靠的真正 W 级三光子源 [3],其产生速率达到了前所未有的水平。重要的是,这一突破无意中揭示了与几个世纪以来数学和天体力学中著名的三体问题的深刻联系。我们的旅程从基础量子概念开始,调查替代量子比特平台,并深入研究传统的双光子生成方法,如自发参数下转换 (SPDC) 和固体材料中的 SFWM。我们揭示了我们在相干原子内窄带双光子和三光子生成方面的最新突破,有望实现长距离量子信息处理和网络。单光子具有不可动摇的量子特性,可作为多功能信息载体,而中性原子则为培育长寿命量子比特和量子存储器提供了理想的环境。我们揭开了中性原子纠缠生成背后的复杂机制的神秘面纱,揭示了 SFWM 和 SSWM 原理。演讲最后展示了我们的最新进展,强调了我们在窄带纠缠光子中产生无与伦比的相干性和可调谐性的能力。这些属性推动了可扩展量子网络的发展,连接了量子处理器并实现了安全的全球信息交换。当我们踏上这段启迪之旅时,我们阐明了单光子和中性原子在推进量子信息科学和技术中的关键作用,激发了迈向量子未来的新研究途径。
美国专利 9759862 绝热/非绝热偏振分束器 美国专利 9748429 具有减少暗电流的雪崩二极管及其制造方法 美国专利 9740079 集成光学。具有电子控制光束控制的收发器 美国专利 9696492 片上光子-声子发射器-接收器装置 美国专利 9612459 带有微加热器的谐振光学装置 美国专利 9467233 功率计比率 稳定谐振调制器的方法 美国专利 9488854 高速光学相移装置 美国专利 9391225 二维 APD 和 SPAD 及相关方法 美国专利 9366822 具有同时电连接和热隔离的热光调谐光子谐振器 美国专利 9329413 高线性光学调制的方法和装置 美国专利 9268195 使用四波混频产生纠缠光子的方法和装置 美国专利 9268092 导波光声装置 美国专利 9261647在半导体波导和相关设备中产生应变 美国专利 9239431 通过热机械反馈实现谐振光学设备的无热化 美国专利 9235065 适用于差分信号的热可调光学调制器 美国专利 9128308 低压差分信号调制器 美国专利 9127983 用于控制工作波长的系统和方法 美国专利 9083460 用于优化半导体光学调制器操作的方法和设备 美国专利 9081215 硅光子加热器调制器 美国专利 9081135 用于维持光子微谐振器谐振波长的方法和设备 美国专利 9063354 用于稳健无热光子系统的被动热光反馈 美国专利 9052535 电折射光子设备 美国专利 8947764 高速光子调制器设计 美国专利 8822959 光学相位误差校正方法和装置 美国专利 8625939 超低损耗腔和波导散射损耗消除 美国专利 8615173 集成谐振光学装置波长主动控制系统 美国专利 8610994 具有减小的温度范围的硅光子热移相器 美国专利 8600200 纳米光机械换能器 美国专利 8027587 集成光学矢量矩阵乘法器 美国专利 7983517 波长可调光环谐振器 美国专利 7941014 具有绝热变化宽度的光波导装置 美国专利 7667200 热微光子传感器和传感器阵列 美国专利 7616850 波长可调光环谐振器
连续变量 (CV) 类型的多模量子光学是许多量子应用的核心,包括量子通信 [1、2]、量子计量 [3] 以及通过团簇态 [5-7] 进行的量子计算 [4]。处理多模光学系统的核心步骤是识别所谓的超模 [8-10]。这些是原始模式的相干叠加,使描述系统动力学的方程对角化,并允许将多模 CV 纠缠态重写为独立压缩态的集合 [11]。超模知识对于优化对状态的非经典信息的检测[8,9,12]、在光频率梳[13-15]或多模空间系统[16]中生成和利用 CV 团簇态以及设计复杂的多模量子态[17,18]都是必需的。在实验中,由于超模在统计上是独立的,因此可以用单个零差探测器测量,从而大大减少实验开销[15]。由于其用途广泛,因此一种允许检索超模的通用策略对于多模量子光学及其应用至关重要。本理论工作的目的是提供这样一种强大而通用的工具。更具体地说,多模光量子态通常是通过二次哈密顿量描述的非线性相互作用产生的[2]。对角化系统方程的变换必须是辛变换,即遵守交换规则。标准的辛对角化方法,如 Block-Messiah 分解 (BMD) [19],适用于单程相互作用 [20-22],但不适用于基于腔的系统,因为在基于腔的系统中使用它们需要对所涉及模式的线性色散和非线性相互作用做出先验假设 [10, 23]。这种限制使传统的辛方法不适用于处理广泛的相关实验情况,包括利用三阶非线性相互作用的共振系统中的多模特征。例如,硅和氮化硅等集成量子光子学的重要平台就是这种情况 [24, 25]。在本文中,我们提供了一种广义策略,它扩展了标准辛方法,并允许在没有任何假设或限制的情况下检索任何二次哈密顿量的超模结构。我们在此考虑一个通用的阈值以下谐振系统,该系统可以呈现线性和非线性色散效应。我们的方法适用于多种场景。这些包括低维系统,例如失谐设备中的单模或双模压缩[ 26 , 27 ]或光机械腔中的单模或双模压缩[ 28 ],以及高度多模状态,例如通过硅光子学集成系统中的四波混频产生的状态[ 24 ]。最终,我们注意到,这里为共振系统开发的工具同样可以用于单程配置中的空间传播分析[16, 22]。