外部环境 2022 年,与地缘政治紧张、供应链限制、贸易平衡不稳定、能源价格上涨等全球逆风相比,印度仍然是稳定和增长的支点。在这种全球商业环境加上气候挑战的情况下,印度城市和公司表现出了非凡的韧性,他们采用可持续性和资源效率来简化流程并从资产中获得更好的回报。政府在向更清洁能源转型方面的积极计划,强调最后一英里的连接交付,进一步改善了数百万人的生活质量。随着电动客车、地铁、半高速铁路、机场和高速公路走廊等电气化和建设智能交通系统的推动,三线和四线城市的商业潜力正在得到提升。基础设施方面的激励措施和 5G 网络的推出正在为印度的数字经济打造强大的支柱,并促进多个行业的增长。
在多相电能表中启用分流电流传感器,不受磁篡改,精度高;支持 EN 50470-1、EN 50470-3、IEC 62053-21、IEC 62053-22、IEC 62053-23、ANSI C12.20 和 IEEE1459 标准 兼容三相、三线或四线(三角形或星形)以及其他三相服务 计算每相和整个系统的有功、无功和视在能量 TA = 25°C 时,在 2000 比 1 的动态范围内,有功和无功能量的误差小于 0.25% TA = 25°C 时,在 1000 比 1 的动态范围内,电压和电流有效值误差小于 0.1% 包括 THD 在内的电能质量测量 宽电源电压操作:2.4 V 至 3.7 V 基准:1.2 V(漂移 10 ppm/°C 典型值)单3.3 V 电源 安全和监管批准 UL 认证 5000 Vrms,持续 1 分钟,符合 UL 1577 标准 CSA 元件验收通知 #5A IEC 61010-1: 400V rms (基本) VDE 合格证书 DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 V IORM = 846 V 峰值
采用 MEMS 技术制造的四线全桥压阻式冲击加速度计具有低功耗,同时在加速度水平大于 50 kg 时仍可提供 +/- 200 mV 满量程输出。加速度计与用于调节应变计全桥的同类型四线电路在电气上兼容,并且由于它们的输出比应变计大得多,因此对信号放大的要求大大降低。与机械隔离的 ICP ® 加速度计相比,它们具有更宽的工作温度范围。它们的频率响应(取决于型号)可以从 DC(0 Hz)均匀分布到高达 20 kHz 的值。为了减轻激发其共振频率时的响应严重性,它们结合了挤压膜阻尼,实现了临界值的 0.02 到 0.06。这些阻尼值比传统 MEMS 加速度计中的阻尼值高得多。由于硅是一种易碎材料,因此还采用了超量程止动装置,以尽量减少传感元件的损坏,然后将传感元件密封在密封封装内。在相当的 G 级下,MEMS 技术能够使单个加速度计实现最小的封装尺寸。
a. 适当时,优先选择三相四线 277/480 伏特主服务。b. 在完成单线图并确定主服务最终尺寸后,应提供断路器协调研究。c. 应为由可熔断主服务断路器提供服务的主服务提供每相两 (2) 套备用保险丝。d. 场地平面图应标明从电源到建筑物配电室的电力公用设施线路的布线。e. 应根据公用设施的要求,从公用设施杆到高压线的底座式变压器提供备用地下导管。f. 还应从公用设施底座式或杆式变压器到 CT 柜提供备用导管,以备将来使用。g. 所有建筑布线均应符合费尔法克斯县采用的国家电气规范 (NEC) 版本的要求。h. A/E 应在设计期间的适当时间将建筑负荷信函和计划发送给电力公司,并将副本发送给 BDCD 项目经理。
此技术论文描述了锁定放大器的最多用途之一,即四点AC固定测量(也称为四端或四线)。材料或设备的电阻(或者通过样品几何形状进行正常的电阻率)是一种基本特性,可用于理解Maperial的电子行为,无论是从物理,材料科学的角度还是电气工程的角度来看[1-3]。的确,它是我们小组中最早的测量之一,以了解新合成的导电材料。例如,金属的电阻率将随温度降低而降低,而随着电荷载体“冻结”,半导体或绝缘体的电阻率将增加。为了进一步量化金属的质量,可以通过测量室温下的电阻比除以低温下的电阻(4 K)来隔离杂质和晶体缺陷的影响。这是所谓的残余电阻率或RRR。完美的金属晶体将在零温度(无限RRR)下具有零分解性,而杂质会导致耐药性饱和至有限的值(较小的RRR)。纵向抗性当然是识别超导性的关键措施[4,5]。电阻率测量的其他用途包括识别
大多数玉米模型旨在预测谷物产量对环境的响应。,但它们在所包括的生物过程的类型和复杂性方面有所不同。这些差异在预测物候学的技术中尤为明显。runge-bert模型没有尝试预测发展。分裂模型和Simaiz均通过累积度数来预测生长阶段。当总和达到指定值时。假定植物处于下一阶段。没有尝试量化光周期灵敏度。'rhe“能量作用生长”模型还仅基于温度来预测物候学。温度函数是一系列适合生长率数据的四线。“生物温度”模型将遗传,光周期和当时的因子总和,以预测粘土到流苏起始的数量。玉米和玉米片,每种使用光周期和温度来预测发展。在这两种情况下,苯酚比在敏感基因型中延迟流苏启动并增加了叶子的最终数。但是,Ceres-Maize提供了一个更详细的预测阶段和数字的系统,并且可以更容易地测试和验证其组件。最近,在日本描述了一个物候模型,其中包括叶子起始,叶子胶结外观和类似于Ceres-Maize的发育阶段。M9在此模型中,DEVE速率是温度依赖性的,并且忽略了光周期敏感性。
R160 - SUNKKO T-685 电池和电池组测试仪使用说明亲爱的客户,感谢您的信任并购买本产品。本使用说明书为产品的一部分。它包含有关将产品投入运行和操作的重要说明。如果您将产品传递给其他人,请确保也向他们提供这些说明。请保留本手册,以便随时再次阅读!本产品是顺应电池行业的发展而开发的针对低阻大容量锂电池的检测及高速分选。内阻的单位一般为mΩ。内阻较大的电池在充放电过程中,内部功耗会很大,而且发热严重,会造成锂离子电池老化衰减加速,同时也限制了高倍率充放电的使用。内阻越低,锂离子电池的寿命越长,倍率性能越好。通过测量内阻可以检查出好电池、坏电池以及相同的电池。在组装电池组时,需要对电芯容量、内阻、电压进行检查和匹配。电池组的性能取决于最差的电池单元。概述:1、本仪器采用意法半导体公司进口高性能单晶微电脑芯片,结合美国“Microchip”高分辨率A/D转换芯片作为测量控制核心,以锁相环合成的精密1000Hz交流正电流作为测量信号源,施加于被测元件。产生的微弱压降信号经高精度运算放大器处理,再由智能数字滤波器分析出相应的内阻值。最后显示在一个大的点阵LCD显示屏上。 2、该仪器优点:准确度高、自动选档、自动极性识别、测量速度快、测量范围广。 3.该装置可同时测量电池(蓄电池)的电压和内阻。采用四线开尔文型测试探头,可以更好地避免测量接触电阻和导体电阻的干扰,具有良好的抗外界干扰性能,从而得到更准确的测量结果。 4.仪器具有与PC机串行通讯功能,可利用PC机对多个测量结果进行数值分析。 5.本仪器适用于各类电池交流内阻(0—100V)的精确测量,特别适合大容量动力电池的低内阻测量。 6、该设备适用于工程中的电池研发、生产及质量检测。产品特点:采用18位高分辨率AD转换芯片,确保测量准确;双5位显示,最高测量解析度值为0.1μΩ/0.1mv,精细度高;自动多单位切换,覆盖广泛的测量需求 自动极性判断及显示,无需区分电池极性 平衡开尔文四线测量探头输入,高抗干扰结构 1KHZ交流电流测量方式,精度高
在过去的几年中,针对 KIT 突变或 PDGFR 突变的胃肠道间质瘤 (GIST) 的原发性和继发性驱动突变的治疗取得了一些进展。GIST 中的主要驱动突变包括 KIT (75%–80%) 和血小板衍生的生长因子受体 α (PDGFRA;8%–10%),一小部分 KIT 和 PDGFRA 突变阴性 (10%–15%),这些突变含有其他分子改变,例如琥珀酸脱氢酶 (SDH) 缺乏症 (大多数)、BRAF 和神经纤维瘤病 1 型 (NF1) 突变。1根据先前的随机研究 2、3,伊马替尼、舒尼替尼和瑞戈非尼分别是三种获批用于不可切除/转移性 GIST 患者的一线、二线和三线治疗的药物(图 1)。最近,监管机构批准利普替尼用于治疗四线胃肠道间质瘤,批准阿伐替尼用于治疗 PDGFR 外显子 18(D842 V)突变的胃肠道间质瘤。伊马替尼耐药可分为原发性耐药和继发性耐药。原发性耐药的主要原因是 D842 V PDGFRA 突变,这构成
摘要 使用患者来源的抗 CD19 嵌合抗原受体 (CAR) T 细胞治疗血液系统恶性肿瘤,已证明对治疗无效的晚期白血病和淋巴瘤患者可获得长期缓解。相反,由于靶向肿瘤外毒性、肿瘤 T 细胞浸润不良、CAR T 细胞扩增效率低、免疫抑制肿瘤微环境和苛刻的预处理方案,CAR T 细胞治疗包括晚期胃癌 (GC) 在内的实体瘤更具挑战性。我们报告了自体 Claudin18.2 靶向 CAR T 细胞 (CT041) 在转移性 GC 患者中的出色效果,该患者在四线全身化疗和免疫疗法联合治疗后病情出现进展。在两次 CT041 输注后,患者的靶病变完全缓解,并维持了 8 个月的总体部分缓解,仅出现少量腹水。此外,肿瘤相关的循环肿瘤 DNA (ctDNA) 减少与 CAR-T 细胞快速扩增和放射学反应同时发生。没有发生严重毒性,患者的生活质量显著改善。这一经验支持使用 CAR-T 细胞疗法靶向 Claudin18.2 阳性 GC,并有助于验证 ctDNA 作为 CAR-T 细胞疗法中的生物标志物。临床见解:Claudin18.2 靶向 CAR-T 细胞可以安全地在挽救性转移性 GC 中提供完整的客观和 ctDNA 反应。
摘要:本综述研究重点关注并网双馈感应发电机 (DFIG) 风电场智能控制系统中使用的各种方法。本文回顾了一种使用模糊协调 PI 的控制器,该控制器建议用于在大型风电场发生干扰时通过降压-升压转换器 (DC-DC 转换器) 改善与 DFIG 耦合的超级电容器 (SC) 的动态性能。此外,本研究回顾了一种俯仰角控制,用于在不同风速下调节风力涡轮机 (WT) 叶片的角度,以控制功率并安全运行 WT。在俯仰角上实施人工智能控制 (模糊方法) 取代传统控制以提高系统性能,模糊方法用于在各种工作条件下自动调整传统控制参数。然后,本文回顾了一种开发的控制技术,该技术使用区间型 2 模糊逻辑控制 (FLC) 调整 PI 来为由 DFIG 操作的 WT 进行最佳扭矩调节。建议的控制可调节机械转子速度的误差并产生实现最大输出功率的最佳扭矩。根据现有文献的结果,引入了 SC 到三相四线有源电力滤波器 (APF) 直流链路的集成,方法是使用由模糊控制方法控制的接口三级双向降压-升压转换器。关键词:智能控制系统;风能;电力电子;双馈感应发电机;最大功率跟踪。