1。由旋转四边形ABCD形成的体积元素说明了垂直轴x。(A4)。2。ABCD的多次旋转可以从连续的薄壁段创建球形形状。3。使用此方法,可以使用多个同心字符串来消除管道运动的需求。4。字符串位置是恒定的。毯子和水接口水平最初设置在洞穴的顶部,并逐步向下移动。(D4至F4)。
简介:Fallot(TF)的四边形是氰化先天性心脏缺陷。它包含4个不同的解剖元素。目的:这项研究的目的是描述在Méthodologie的Ignace Deen国家医院(IDNH)中为Fallot进行四项术的患者人群:进行了一项回顾性研究。它包括56例在IDNH心脏病学系的3年期间综合的Fallot(TF)患者。résultats:在研究结束时,我们发现英尺优先影响男性,男性/女性的性别比为2:1。平均发病年龄为5.5岁。1-5岁年龄段的人数最多,极端为03个月零16岁。平均发病年龄为9个月。血父是最常见的危险因素。大多数被诊断为FT的患者(32)在诊断后的一年内接受了手术,延迟范围为1到6个月。手术时的平均年龄为4.8岁。中度肺功能不全是术后最常见的并发症。术后立即发生性行为较低(3.1%或一名患者)。结论:法洛的四边形是最常见的氰化先天性心脏缺陷。早期检测和管理需要一种多学科的养老药,儿科医生和心脏病医生,目的是改善重要的预后。
Manikandan Ramachandran 1,Rizwan Patan 2,Ambeshwar Kumar 3,Soheil Hosseini 4,Amir H. Gandomi 5抽象机器学习算法,例如支持向量机(SVM),已广泛用于检测大数据环境中的脑肿瘤。但是,由于发现涉及的复杂性很高,因此SVM分类器不适合大型数据集。因此,在这项研究中,使用SVM引入MapReduce模型来处理大规模数据并处理此问题。在本文中,引入了一个称为相互信息的MAPREDUCE和最小四边形分类(MIMR-MQC)的框架,用于脑肿瘤检测,以应对与大数据分类相关的挑战。在这里,使用MIMR进行预处理,该过程消除了脑肿瘤数据集中有害和冗余属性。使用大数据集检测脑肿瘤,该技术可降低计算复杂性和时间。然后,使用Lagrange乘数和径向基核函数创建最小四边形支持向量机模型,以提高分类过程的效率。MIMR-MQC框架已在美国中央脑肿瘤注册中心(CBTRUS)上进行了验证。结果表明,与现有模型相比,提出的模型分别将计算复杂性和检测时间分别降低了37%和27%,从而观察到了较高检测准确性的21%。与最先进的机器学习技术进行了比较,MIMR-MQC框架在脑肿瘤检测时间和由于数据分布更好而导致的准确性方面表现更好。
通过检查四分之一的当前组成,我们可以进行几个观察,以回答本文开始时提出的研究问题。首先,四边形目前由美国和三个中大国组成:澳大利亚,印度和日本。其中,澳大利亚是一种自称的中级大国,属于米克塔(Mikta),例如非正式外交部领导的伙伴关系,墨西哥,印度尼西亚,韩国,土耳其和澳大利亚。5印度被认为是未来的大国,而日本可以说,在潜在方面,可以说是一种巨大的力量,它通过“通过联盟建设来维持国际秩序,作为调解人和“待会者”,以及国际冲突管理和解决活动。” 6
本手册中描述的数字地图数据由德克萨斯州铁路委员会的地理信息系统生成,仅供参考。基础地图信息直接来自美国地质调查局 7.5 分四边形地图。德克萨斯州土地总局地图上的专利测量线在美国地质调查局基础上尽可能准确地解释。油气井数据或管道数据(如果包含)来自铁路委员会的公共记录。提取此数据的地图系统目前正在开发中,并不断更新和完善。这些数据仅供铁路委员会内部使用,铁路委员会不对其准确性或完整性作出任何声明。用户负责检查此数据的准确性、完整性、时效性和/或适用性。
3。梵语LKFGR; Ikb&2 Hkkos fo | rs nso%ikb&4 ew [kzeamye〜ikb&5 kkuke`r〜o〜o〜o; kdj.k&o.kz fopnsn] o.kz la; kstu; yv〜,oa y`v〜ydkj izr ;;&drok] y; i〜] vo ;;在laf/k&nh?kz]中数学第1章。有理数章-2。一个变量中的线性方程 - 第3章。理解四边形第4章。数据处理第5章。正方形和方形根部 - 第6章。立方体和立方根。第7章。比较数量。5。科学1。作物生产和管理2。摩擦3。保护动植物4。微生物:朋友或敌人5。力和压力6。电流的化学作用7。附加化学8。一些自然现象6。社会科学
摘要:本文介绍了一种针对机场环境量身定制的新型自动吊舱四边形无人机系统的开发。使用Aurrigo Auto-Pod(AAP),多功能系统旨在将无人机固定在将视频图像(例如视频图像)传输到AAP的无人机,同时为无人机提供电源。通过开发基于新型模型的设计(MBD)方法,对束缚系统的动力学行为进行了分析。仿真结果证明了使用束缚无人机方法提高机场运营效率和安全性的潜在好处。该研究强调了潜在机场环境中无人机的控制动态和操作约束,证明了系统在严格的航空法规下运行的能力。