当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。WL-goose是实现这些壮举的首个计划模型学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造和描述用于计划的逻辑特征之间的联系。