摘要:浅水测深是土木工程、港口监测和军事行动等各个领域关注的重点课题。本研究介绍了几种使用集成了光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES) 等先进创新传感器的海上无人系统 (MUS) 评估浅水测深的方法。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。详细介绍了每种技术的实施和所得数据,然后对其准确性、精确度、快速性和运行效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对每一种调查方法进行评估时,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是使用海上无人系统 23 进行机器人实验和原型设计(REPMUS23)多国演习的一部分,而该演习又是快速环境评估 (REA) 实验的一部分。
我们都使用人工智能。几乎每天。大多时候都没有注意到。当我们让搜索引擎引导我们浏览网络时,当我们在线购物时。或者当我们依靠导航系统找到正确的路径时。顺便说一下,人工智能以三种方式存在于导航系统中。最短路径在那里确定。有语音输出。并且当前交通信息也包含在路线规划中。这就是人工智能吗?是的。但这还不是全部。该术语目前尚无法明确定义。它在某种程度上与计算机科学、疯狂的技术以及越来越多的应用有关。关于水文,希望本期《水文新闻》能够提供更清晰的说明。我们问了一个问题:人工智能在水文学中扮演什么角色。您将在五篇专业文章(其中两篇已经经过同行评审)和与弗莱堡弗劳恩霍夫物理测量技术研究所 (IPM) 的 Alexander Reiterer 教授的科学讨论中找到答案(第 42 页)。技术贡献涉及水底的石头,人工智能应该在多波束回声测深仪或侧扫声纳的测量数据中检测到这些石头(Fel dens et al.,第 6 页,以及 Christensen,第 24 页);它是关于自动»识别和分类本-
摘要 — 多波束全向声纳是当前渔民使用的工具,但也可用于监测平台周围的远洋鱼群。多波束处理方法现在提供了改进的原始数据存储容量。Simrad SP90 声纳用于探测与漂流鱼聚集装置 (FAD) 相关的鱼群,数字系统用于采集和处理体积后向散射回波和位置数据。数据采样方法基于两种模式定义:一种用于周期性搜索 FAD 和相关鱼群,一种用于漂流模式下的鱼群监测。通过同时进行目视观察或/和与回声测深仪记录交叉核对,验证了对几种与 FAD 相关的鱼群物种的检测。目标鱼类的鱼群行为特征对于正确解释声学数据至关重要。声纳探测阈值是鱼的数量、大小、种类和每个动态结构(鱼群或浅滩)中个体的最近邻距离 (NND) 之间的折衷结果。金枪鱼群游动态意味着 NND 有时可能太大,以至于无法检测到这些鱼的存在,尽管它们数量众多。应以整体方式分析和解释声纳数据,并结合漂流 FAD 周围所有物种的行为模式和动态。配备 360˚ 扫描声纳 c 的自主声纳浮标原型
目前的工作 自 2017 年 3 月 1 日起担任 IIT Ropar 土木工程系(测绘学)助理教授。在 IIT Ropar,我建立了测绘实验室,它是最先进的设施之一。测绘实验室配备了所有现代仪器,如 DGPS、全站仪、地面激光扫描仪 (TLS)、无人机和带回声测深仪的遥控船。实验室可以使用 ArcGIS、ERDAS LPS、e-Cognition、Trimble Business Center、Real works 等专业软件处理所有类型的测绘数据。部分软件是通过工业合作伙伴以非常低的成本提供的。六名学生在我的指导下注册了博士学位课程。我还指导了一名由 SERB-DST 资助的国家博士后研究员,目前指导一名由 SERB 资助的 TARE 研究员。目前,我们正在研究 (i) 城市扩张、(ii) 山体滑坡、(iii) 冰川监测和 (iv) 使用遥感技术进行农业研究。教学 CEL 103 测绘学(土木工程学士学位)CEL 605 高级遥感(博士课程)GE 101 技术实验室博物馆(通用工程课程)CE 516 水和环境地理信息学博士。标题:《喜马拉雅山 CHHOTA-SHIGRI 冰川遥感研究》印度理工学院鲁尔基分校地球科学系(2015 年)。
1 简介 1-1 简介 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-1 1-2 范围。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1-3 历史视角。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-2 1-4 技术演变。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-3 1-5 理念 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1-4 1-6 救助监督员的角色。。。。。。。。。。。。。。。。。。。。1-5 2 水下搜索和回收技术 2-1 简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-1 2-2 水下搜索。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-1 2-2.1 搜索分类。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-2 2-2.2 搜索工具。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-3 2-2.2.1 回声测深仪。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-3 2-2.2.2 侧扫声纳。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-3 2-2.2.3 Pinger 定位器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-5 2-2.2.4 磁力计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..2-6 2-2.2.5 光学成像系统 ..。。。。。。。。 < /div>.................. div>.2-6 2-2.2.6 遥控潜水器 (ROV) ...。 。 。 。 。 。 。 。 . . . . . . . . . 2-7 2-2.2.7 导航系统 . . . . . . . div> . . . . . . . . . . . . . . . . . . div> . . . . . . . 2-7 2-2.3 损失数据分析 . . . . < div> 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 . . . . . . div> . 2-8 2-2.4 搜索概率分析 . . . . > . . . . . . < div> 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。.........2-7 2-2.2.7 导航系统 ....... div>.................. div>.......2-7 2-2.3 损失数据分析 ....< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>.2-8 2-2.4 搜索概率分析 ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。2-8 2-2.5 搜索模式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-8 2-2.5.1 并行网格搜索。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-9 2-2.5.2 恒定范围搜索。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-10 2-2.5.3 “Z”搜索。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2-11 2-2.5.4 ROV 箱搜索。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....2-11 2-2.6 搜索覆盖范围 .................。。。。。。。。。。。。。。。。。。。。。。。2-11 2-2.6.1 幅宽。.....................。。。。。。。。。。。。。。2-11 2-2.6.2 车道间距。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....2-12 2-2.6.3 范围重叠 .................。。。。。。。。。。。。。。。。2-12 2-2.7 搜索时间。。。。。。。。。。。。。。。。。。。。。。。。。.....................2-12 2-2.8 联系人分类。..。。。。。。。。。。。。。。。。。。。。。。。。...........2-13 2-3 搜索与回收作业之间的过渡 ..2-13 2-4 水下回收 .......。。。。。。。。。。。。。。。。。。。。。。。。.....2-14 2-4.1 恢复系统。...............。。。。。。。。。。。。。。。。。。。。。。。2-14
摘要 通过中频全向多波束声纳获取的数据开发可用于开展渔业研究中的原始研究,但尽管大多数渔船和许多研究船上都配备了此类设备,但却很少使用。这是唯一用于实时监测船只或浮标周围水平全向平面内鱼群的系统。1996 年至 2001 年间,我们使用了两种标准全向声纳,并根据两种主要采样方案开发了利用其特定声学数据的新方法:“勘探”,包括捕鱼和搜索作业,以及“漂流”,如使用仪器浮标系统或在固定船只上。我们提出了一种从研究船或商船上连续采集数据的完整方法,并通过图片分析和数据处理方法自动提取数据。考虑了两种数据分析情况:第一种是基于逐个学校的“单校”模式;第二种模式考虑了在声纳采样范围内检测到的所有鱼群,即“集群”模式。基本声纳信息分为五类,包括 24 个调查和声纳参数以及 55 个鱼群、集群和渔民行为描述符。我们回顾了这些类别的应用,并讨论了它们在渔业科学中的应用前景。如果声纳系统能够评估船只避让对鱼群生物量评估的影响,那么简单的声纳回声积分过程就无法提供准确的丰度估计。全向声纳数据可用于集体分析鱼群的游泳速度、扩散和迁移方面的运动学、群体分裂和合并指数等聚集动力学、集群的空间特征(如鱼群密度)、二维结构和渔民行为。将这些数据整合到鱼群数据库中,包括多频回声测深仪和横向多波束(3D)声纳数据与物种识别方法相结合,将能够全面了解鱼群行为,从而采用准确的渔业管理方法。
摘要 通过中频全向多波束声纳获取的数据开发可用于渔业研究的原创性研究,但尽管大多数渔船和许多研究船上都配备了此类设备,但这种设备却很少使用。这是唯一一种用于实时监测船只或浮标周围水平全向平面内鱼群的系统。1996 年至 2001 年间,我们使用了两种标准全向声纳,并根据两种主要采样方案开发了利用其特定声学数据的新方法:“勘探”,包括捕鱼和搜索作业,以及“漂流”,如使用仪器浮标系统或固定船只。我们提出了一种从研究船或商业船上连续采集数据的完整方法,通过图片分析自动提取数据并采用数据处理方法。考虑两种数据分析情况:第一种是逐个鱼群进行分析,即“单群”模式;第二种是考虑声纳采样体积内检测到的所有鱼群,即“集群”模式。基本声纳信息分为五类,包括 24 个调查和声纳参数以及 55 个鱼群、集群和渔民行为描述符。我们回顾了这些类别的应用,并讨论了它们在渔业科学中的应用前景。如果声纳系统能够评估船只避让对鱼群生物量评估的影响,则简单的声纳回声积分过程无法提供准确的丰度估计。全向声纳数据可用于集体分析鱼群的游动速度、扩散和迁移方面的运动学、群体分裂和合并指标等聚集动力学、群体密度等集群的空间特征、二维结构和渔民行为。将这些数据整合到鱼群数据库中,包括多频回声测深仪和横向多波束 (3D) 声纳数据以及物种识别方法,将使我们能够全面了解鱼群行为,从而采用准确的渔业管理方法。
摘要:1999 年 9 月,在纳米比亚本格拉的一次巡航中,我们结合远洋拖网采样凝胶状大型浮游动物,收集了多频率声学数据(18、38 和 120 kHz)。采样主要针对钵水母 Chrysaora hysoscella 和水生水母 Aequorea aequorea,这两种水生水母数量庞大,可能具有重大的生态重要性,并且会阻碍远洋捕鱼和钻石开采活动。C. hysoscella 主要在近海站发现,而 A. aequorea 在离岸较远的深水区数量最多。回声测深仪观测结果与网捕量直接相关,并确定了两个物种在每个频率下的捕捞密度(个体数/m 3 )和海域散射系数(s A )之间的关系,以便用比较法估算目标强度(TS)。C. hysoscella(平均伞直径 26.8 cm)的 TS 在 18 kHz 时为 -51.5 dB,在 38 kHz 时为 -46.6 dB,在 120 kHz 时为 -50.1 dB;A. aequorea(平均中央伞直径 7.4 cm)的 TS 在 18 kHz 时为 -68.1 dB,在 38 kHz 时为 -66.3 dB,在 120 kHz 时为 -68.5 dB。这些 TS 值与之前公布的相关物种估计值相比更为有利。水母的捕获密度很高(每 100 立方米最多 3 只 C. hysoscella,每 100 立方米最多 168 只 A. aequorea)。如此高的密度,加上用于渔业调查的频率下不小的 TS,意味着水母可能会影响鱼类丰度的声学估计。我们建议使用一种简单的多频方法来区分水母的回声和本格拉北部生态系统中一些具有商业价值的远洋鱼类。