方法:从1999年至2004年对1673名国家健康和营养检查调查(NHANES)的参与者进行了回顾性横断面研究。开发了三个逻辑回归模型,以评估贫血与糖尿病下肢溃疡之间的关系。模型1针对人口统计和社会经济变量(年龄,性别,种族和种族,教育水平,家庭收入和婚姻状况)进行了调整。模型2包括其他与健康相关的因素(BMI,心血管疾病,中风,糖尿病家族史,高脂血症,酒精和吸烟状况)。模型3进一步包括临床和实验室变量(HBA1C,CRP,总胆固醇和血清铁蛋白水平)。基于年龄,性别,HBA1C水平,体重指数(BMI)和血清铁蛋白水平的分层分析。
女性在绝经后患阿尔茨海默氏症和其他神经系统疾病的风险更高,但将女性大脑健康与性激素波动联系起来的研究却有限。我们希望通过开发工具来量化性激素波动过程中大脑的三维形状变化,以研究这种联系。三维离散曲面空间上的测地线回归提供了一种表征大脑形状演变的原则性方法。然而,就目前的形式而言,这种方法的计算成本太高,不便于实际使用。在本文中,我们提出了加速三维离散曲面形状空间上的测地线回归的近似方案。我们还提供了每种近似值可使用的经验法则。我们在合成数据上测试了我们的方法,以量化这些近似值的速度-准确度权衡,并表明从业者可以期待非常显着的速度提升,同时只牺牲很少的准确性。最后,我们将该方法应用于真实的大脑形状数据,并首次表征了女性海马体在月经周期中如何随着孕酮的变化而改变形状:我们的近似方案(实际上)使这一表征成为可能。我们的工作为生物医学和计算机视觉领域的全面、实用的形状分析铺平了道路。我们的实现在 GitHub 上公开可用。
在本书的前半部分,普洛基向我们介绍了当前冲突的起源。不仅介绍了民主和西方的乌克兰与狭隘和腐败的俄罗斯之间直接和明显的摩擦,还通过研究两个地区(现在是国家)之间关系的历史发展,探讨了这种敌意的根源。本节概述了广泛的历史,重点关注关键发展并展示它们如何导致当今的紧张局势。随着我们关注现在,这种关注变得更加清晰,他指出了过去三十年中导致俄罗斯与乌克兰之间紧张局势不断加剧以及乌克兰与西方联盟不断发展的关键事件,表明冷战结束后的短暂谴责可能是错失的机会。本节还说明了为什么苏联共产主义垮台后“历史的终结”论断是对这些事件的过于乐观的评估,并应该提醒我们,世界其他地方也存在类似的紧张局势,等待正确(错误)的情况重新点燃冲突。
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
I.引言Flyrock是爆炸启动时远离采矿区的岩石质量。通常考虑的第一个参数是:负担,爆炸孔直径,深度,粉末因子间距,茎,爆炸性材料类型和sub-drill在Flyrock预测期间是可控参数。此外,爆炸工程师无法影响的岩石性能是无法控制的参数,例如压缩间距和岩石的拉伸强度。因此,爆炸工程师必须更改第一个参数,以最大程度地减少flyrock掷距离。设计了各种经验方程,以设想由爆破操作[1],[2]产生的fly架。经验模型是根据flyrock上的几个现场实验的有效参数开发的,即孔直径,爆炸性,茎,负担的密度,弹出材料,粉末因子和孔长度的初始发射速度。因此,这些经验方程的性能预测能力在许多情况下不是很有效[2],[3]。
2020 年,教育委员会批准了一项全面的学区重新开放/重返校园计划,该计划详细说明了学区如何在公共卫生危机期间安全地让学生返校并提供高质量的教学。该计划已获得新泽西州教育部的批准,并指导了我们去年在疫情期间提供高质量教学的工作。学区现在承认,随着公共卫生条件的改善,教育部已终止了对虚拟教学的豁免,并已指示学区计划在 2021-2022 学年提供全日制、全日制、面对面的教学和运营。因此,我们将继续修改和调整我们的“COVID-19 安全返校计划”,以确保所有学生和教职员工在 9 月安全健康地返校,进行完全面对面的教学。
kerstst。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 KOT_SIM_AGG。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 kot_sim_make。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 KOT_SIM_AGG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_make。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_ot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 kot_sim_reg。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 run_myot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 run_myots。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6
摘要 - 基于端到端视力的模仿学习已直接从专家演示中学习控制命令来证明自主驾驶的有希望的结果。然而,传统方法依赖于基于回归的模型,这些模型提供了精确的控制,但缺乏一致性估计或基于分类的模型,这些模型提供了置信度得分,但由于分离而降低了精度。此限制使量化预测行动的可靠性并在必要时应用更正是一项挑战。在这项工作中,我们引入了双头神经网络体系结构,该架构既集成回归和分类负责人,以提高模仿学习中的决策可靠性。回归负责人预测了连续的驾驶动作,而分类头则估计了置信度,从而实现了一种调整机制,该校正机制可以调整低信心情景中的动作,从而增强了驾驶稳定性。我们在Carla模拟器内的闭环环境中评估了我们的方法,证明了其检测不确定的动作,估计信心并应用实时校正的能力。实验结果表明,我们的方法可降低车道偏差,并提高了传统精度高达50%,表现优于常规回归模型。这些发现突出了分类指导置信度估计的潜力,以增强基于视觉的模仿学习对自主驾驶的鲁棒性。源代码可在https:// github上找到。com/elahedlv/profester_aware_il。
动机:模块化响应分析(MRA)是从turg turgation数据中推断生物网络的良好方法。经典,MRA需要线性系统的解决方案,结果对数据和扰动强度中的噪声敏感。由于噪声传播,对10个或更多节点网络的应用很难。结果:我们提出了将MRA作为多线性回归问题的新表述。这使得能够在更大,过度确定且更稳定的方程式系统中整合所有重复和潜在的扰动。可以获得更相关的网络参数的置信区间,我们显示了大小高达1000的网络的竞争性能。以已知零边缘形式的先验知识整合进一步改善了这些结果。可用性和实现:用于获得呈现结果的R代码可从GitHub获得:https:// github.com/j-p-borg/bioinformatics
癫痫的诊断和治疗在很大程度上取决于脑电信号样本中癫痫发作的鉴定。本文主要集中于鉴定癫痫发作和基于EEG信号的分类,该特征的三个重要统计特征优先考虑EEG信号的非平稳特征,即复杂性,能量波动和自回旋模型,以表示独特的癫痫发作模式。测量复杂性的样品熵(SE)的三个特征,一种平均Teager Energy(MTE)之一,它测量了与癫痫发作相关的暂时性能量波动,而四种自回归(AR)建模技术提出了一种新颖的癫痫发作方法。基于线性相关性,AR模型用于表示独特的癫痫发作模式。为了训练AR模型,将信号分为图像前(塞氏症前)和间歇性(非西部)段。在检测阶段,通过滑动窗口计算了EEG信号的MTE和SE特征样本,并利用AR模型预测以下样品。本文表明,MTE,SE和AR模型共同产生了有希望的癫痫发作结果。这种方法在识别癫痫发作和非塞亚零件方面的敏感性和特异性优于现有方法。所提出的方法有可能用于实时癫痫发作检测应用,从而促进癫痫患者的及时诊断和治疗。