艺术符号回归状态(SR)当前构建专业模型,而大语模型(LLMS)的应用仍未得到探索。在这项工作中,我们介绍了将LLMS用于SR任务的第一个综合框架。我们提出了一种SR方法,它提出了一种SR方法,该方法迭代地改善了具有LLM的功能形式,并使用外部光学器来终止其系数。ICSR利用LLMS的强数学先验,同时提出一组可能的功能,并根据其误差来完善它们。我们的发现表明,LLMS能够成功找到适合给定数据,匹配或超越四个流行基准的最佳SR基线的整体性能的符号方程,同时产生了更简单的方程,同时又能提供更好的分布概括。
大脑的生物年龄与其实际年龄 ( CA ) 不同,可用作神经/认知疾病过程的生物标志物和死亡率的预测指标。大脑年龄 ( BA ) 通常使用机器学习 (ML) 从磁共振图像 (MRI) 中估算出来,而这种机器学习很少能表明大脑区域特征对 BA 的贡献。利用 3 418 名健康对照 (HC) 的总体训练样本,我们描述了一个岭回归模型,该模型量化了每个区域对 BA 的贡献。在对 651 名 HC 的独立样本进行模型测试后,我们计算每个区域脑容量的偏决定系数 ¯ R 2 p 以量化其对 BA 的贡献。还使用实际年龄和生物年龄之间的相关性 r、BA 估计值的平均绝对误差 ( MAE ) 和均方误差 ( MSE ) 来评估模型性能。在训练数据上,r = 0.92 ,MSE = 70.94 年,MAE = 6.57 年,且¯ R 2 = 0.81 ;在测试数据上,r = 0.90 ,MSE = 81.96 年,MAE = 7.00 年,且¯ R 2 = 0.79 。体积对 BA 贡献最大的区域是伏隔核(¯ R 2 p = 7.27 %)、颞下回(¯ R 2 p = 4.03 %)、丘脑(¯ R 2 p = 3.61 %)、脑干(¯ R 2 p = 3.29 %)、后外侧沟(¯ R 2 p = 3.22 %)、尾状核(¯ R 2 p = 3.05 %)、眶回(¯ R 2 p = 2.96 %)和中央前回(¯ R 2 p = 2.80 %)。尽管我们的岭回归表现不及最先进的 ML 方法,但它确定了每个大脑结构对整体 BA 的重要性和相对贡献。除了可解释性和准机械见解之外,我们的模型还可用于验证未来 BA 估计的 ML 方法。
1 阿斯图里亚斯中央大学医院,33011 奥维耶多,西班牙 2 奥维耶多大学数学系,33007 奥维耶多,西班牙; sanchezfernando@uniovi.es 3 奥维耶多大学工商管理系,33004 奥维耶多,西班牙; suarezana@uniovi.es (A.S.S.); fjiglesias@uniovi.es (F.J.I.-R.) 4 阿利坎特大学光学、药理学和解剖学系,03690 阿利坎特,西班牙; mm.segui@ua.es * 通讯作者:evam.artime@sespa.es † 本文是会议论文的延伸:Artime Rí os, E.M.;桑切斯·拉什拉斯,F.;苏亚雷斯·桑切斯,A.; Iglesias-Rodríguez,F.J.;SeguíCrespo,M.M. 基于树和进化算法的预测医护人员计算机视觉综合症的混合算法。第 13 届国际会议论文集,混合人工智能系统 (HAIS),奥维耶多,西班牙,2018 年 6 月 20 日至 22 日。
尽管所有美国人,无论其社会经济背景如何,都受到了 COVID-19 的影响,但来自经济弱势社区的美国黑人尤其受到疫情的公共卫生和经济后果的严重打击。许多美国黑人及其社区缺乏足够的收入和财富来缓冲 COVID-19 疫情造成的失业危机和经济危机。这些社区中的许多社区在生活和工作环境中都人口密集,这使这些家庭面临更大的接触病毒的风险。同时,美国黑人在前线重要职业中所占比例过高,这导致他们接触 COVID-19 的风险增加。这种过度代表,再加上长期以来与国家公共和私人医疗保健系统的脱节,已经导致不成比例的个人和家庭不愿意在 2021 年春季和夏季接种疫苗,而当时大多数(如果不是全部)美国成年居民都可以接种几种有效的疫苗(Shah 2021)。
摘要 — 脑机接口 (BCI) 的性能通常会受到影响,因为记录的 EEG 信号本身具有非平稳性,且不同受试者之间存在高度差异。本研究提出了一种新方法,使用基于切线空间的迁移学习 (LR-TSTL) 的逻辑回归来解决基于运动想象 (MI) 的 BCI 分类问题。从 EEG 信号计算出的单次试验协方差矩阵 (CM) 特征被转换为黎曼几何框架,并且通过考虑下三角矩阵来计算切线空间特征。然后使用逻辑回归模型对它们进行进一步分类,以提高分类准确性。在健康受试者的数据集以及中风患者的数据集上测试了 LR-TSTL 的性能。与现有的受试者内学习方法相比,所提出的方法在平均分类准确率 (78.95 ± 11.68%) 方面给出了相同或更好的性能,同时应用于健康受试者的留一跨受试者学习。有趣的是,对于患者数据集,LR-TSTL 显著(p < 0.05)超越了当前基准性能,平均分类准确率为 81.75 ± 6.88%。结果表明,所提出的跨学科学习方法有可能实现下一代无校准 BCI 技术,并具有增强的实用性,尤其是在针对中风患者的神经康复 BCI 设计的情况下。
摘要。本文提出了一种新的贝叶斯回归实现,该回归具有标量协变量的多维数组(张量)响应。最近,各个学科中出现了复杂的数据集,迫切需要设计具有张量值响应的回归模型。本文考虑了一种这样的应用,即在存在张量值大脑图像和标量预测因子的情况下,在 fMRI 实验中检测神经元激活。此应用的总体目标是识别由外部刺激激活的大脑空间区域(体素)。在此类应用和相关应用中,我们建议将所有细胞(或大脑激活研究中的体素)的响应一起回归为标量预测因子的张量响应,以考虑张量响应中固有的结构信息。为了估计具有适当细胞特定收缩的模型参数,我们提出了一种新的张量结构化回归系数多向断棍收缩先验分布,从而能够识别与预测因子相关的细胞。本文的主要创新之处在于,当细胞数量增长速度快于样本大小时,对张量响应回归中提出的收缩先验的收缩特性进行了理论研究。具体而言,在温和的假设下,张量回归系数的估计值在 L2 意义上逐渐集中在真实稀疏张量周围。各种模拟研究和脑激活数据分析从经验上验证了所提出的模型在细胞级参数估计和推断方面的良好性能。
我在此提交论文“一种应用于被动诱发情绪的脑电图信号的情绪预测回归方法”,该论文涵盖了情绪预测领域的脑电图研究。这篇论文是作为蒂尔堡大学硕士数据科学协会的一项作业而撰写的,该协会专注于商业,目的是为情绪预测领域做出贡献。尽管 COVID-19 大流行迫使我们适应新的工作方式,但这项研究是在极大的好奇心和愉悦中完成的。我对脑电图和情绪预测知之甚少,这项工作让我大大提高了我在这个主题上的专业知识。我很感谢我的导师 B. Nicenboim 的合作和指导。我更喜欢在探索不同的解决方案和挑战自己以实现某个目标时拥有很大的自由。B. Nicenboim 给了我这种自由,同时在我需要时总是准备好提供反馈或帮助,我对此心存感激。艾萨克·牛顿曾经说过:“如果我能看得更远,那只是因为我站在巨人的肩膀上。”通过挑战某些想法并质疑研究的某些方面,研究就有机会提高其质量。因此,我要感谢我的巨人 N. Chauhan 和 D. van den Corput 挑战我的想法并因此改进了我的论文。
摘要。本文介绍了 MH114 高升力翼型的多目标优化。我们寻求一组帕累托最优解,使翼型升力最大化,阻力最小化。由于几何不确定性,升力和阻力被认为是不确定的。概率气动力值的不确定性量化需要大量样本。然而,由于 Navier-Stokes 方程的数值解,气动力的预测成本很高。因此,采用多保真替代辅助方法将昂贵的 RANS 模拟与廉价的潜在流量计算相结合。基于多保真度替代方法使我们能够在不确定的情况下经济地优化机翼的气动设计。
在本文中,我们为在有依赖数据的存在下提供了过度参数深的非参数回归的统计保证。通过分解误差,我们建立了非渐近误差界限以进行深度估计,这是通过有效平衡近似和概括误差来实现的。我们得出了具有约束权重的H型函数的近似结果。此外,概括误差受重量标准的界定,允许神经网络参数编号大得多。此外,我们通过假设样品起源于具有较低内在维度的分布来解决维度诅咒的问题。在这个假设下,我们能够克服高维空间所带来的挑战。通过结合额外的错误传播机制,我们为过度参数深拟合的Q-材料提供了Oracle不等式。
符号回归之所以很难,是因为符号表达式的组合空间呈指数级增长。传统上,它依赖于人类的直觉,从而发现了一些最著名的科学公式。最近,在完全自动化该过程方面取得了巨大进展 [6-26],现在已有开源软件可以通过将神经网络与受物理学和信息论启发的技术相结合来发现相当复杂的物理方程 [25]。尽管 [25] 使用未知函数的神经网络近似来发现简化函数属性,取得了最先进的性能,但它是以一种非原则性和临时性的方式实现的,我们用一种通用的、有原则的、更有效的方法取而代之,该方法包含四个主要贡献: