基于运动图像(MI)的大脑计算机界面(BCI)应用旨在分析大脑如何与脑电图(EEG)信号与外部环境相互作用。尽管当前的模型取得了令人鼓舞的结果,但从EEG信号中开发了MI的准确分类仍然是一个重大挑战。在本文中,我们设计了一个名为(ORDWT_AR)的MI分类模型,该模型利用过度完整的理性扩张小波变换(ORDWT)以及自动回归(AR)模型。首先,使用滑动窗口方法将脑电图分割为间隔。然后,每个脑电图通过ORDWT传递以分析EEG信号。因此,从每个段获得了一系列停止频段。然后,将AR与ORDWT集成,以从每个EEG间隔中提取代表性特征。选定的功能被发送到多种分类模型中,包括加权K-Nearest邻居(WKNN),决策树(DTREE)和Boosted树(BST)。使用四个基准EEG数据库评估所提出的模型,其中三个是从脑部计算机界面(BCI)竞争III中收集的,一个是从CHB-MIT中收集的。结果表明,提出的模型ORDWT_AR与WKNN分类器相结合的三个BCI竞赛III数据集的平均分类精度为99.8%,CHB-MIT数据集的平均分类精度为99.7%。获得的结果表明,所提出的方案是对脑电图信号进行分类并具有出色结果的有前途的工具。提议的模型可以支持专家帮助残疾人与环境互动并提高生活质量。
当以这种方式确定项目目标时,可能会出现均值回归;即使没有接受治疗,滞后结果值较高的个体也可能会随着时间的推移而好转。RCT 中的零结果可能意味着干预措施确实对任何人都不起作用(尖锐零假设),但这也与干预措施对一部分结果不会自行改善的受试者有效相一致;即那些长期符合该项目资格的受试者。这就引发了一个问题:是否有可能确定哪些具有极端滞后结果值的受试者可能出现均值回归,哪些受试者可能对治疗有反应。如果可能的话,它可以更清楚地解释 RCT 结果,并允许更具成本效益地确定治疗目标。
摘要 - 深层神经网络具有无人机位置和方向估计的显着视觉感知功能,但它们对不同天气条件的韧性仍需要改善。这些模型通常会在适应新环境时遭受灾难性遗忘,而失去了以前获得的知识。终身学习方法旨在平衡学习灵活性和记忆稳定性。在本文中,我们提出了一种基于图像的方法,以在不同的天气条件下使用2D图像(包括阳光,日落和雾气场景)估算无人机的相对高度。我们的实验表明,当模型在不同的天气数据集上依次训练模型时,尤其是当新图像与初始训练数据集的数据集有很大差异时。但是,测试弹性重量合并(EWC)和直接误差驱动学习(EDL)分别表明,每种方法都有助于维持各种天气条件的稳定性和表现。我们的结果表明,这些方法在各种环境条件下的可行性和有效性。索引术语 - UAV高度估计,持续学习,增量学习,终身学习,弹性权重结合,直接误差驱动的学习。
测量HC是一种快速,无创的方法,用于确定婴儿的头部太大(兆脑)还是太小(小头畸形)。6与标准生长曲线相比,常规的HC测量对于跟踪婴儿的健康至关重要。该程序被认为是“最简单,最便宜,最快的[工具],用于评估中央系统的发展和确定有神经发育障碍风险的新生儿。” 7头圆周也经常在处于危险的婴儿(例如早产或低胎胎婴儿或患有已知遗传疾病的患者)中测量;大多数临床医生在常规良好的访问中包括串行HC测量,或者是由于生长关节以外的原因(即机会性增长测量值)以外的其他婴儿和儿童的定期护理。8
本研究建立在技术整合在高等教育中日益重要的地位,特别是在教育环境中人工智能 (AI) 的使用。背景研究强调,教育项目中对人工智能培训的探索有限,尤其是在拉丁美洲。人工智能在教育实践中变得越来越重要,影响着包括实验科学在内的各个学科能力的发展。本研究旨在描述钦博拉索国立大学实验科学教育项目学生在人工智能、人工智能使用和数字资源方面的专业能力之间的相关性。在方法上,采用了定量方法,涉及对 459 名学生进行结构化调查。使用多元回归模型进行数据分析,以建立对人工智能使用的预测见解。开发了一个多元线性回归模型来预测这些学生的人工智能使用情况。分析显示,人工智能能力、人工智能使用和数字资源之间存在显著相关性。回归模型强调,人工智能能力和数字资源都是人工智能使用的重要预测因素。这些发现强调了发展人工智能能力和提供数字资源访问权限以加强人工智能在教育实践中有效使用的重要性。讨论了局限性和未来的研究方向。
摘要 与许多其他现代编程语言一样,Pharo 将其应用扩展到计算要求高的领域,例如机器学习、大数据、加密货币等。这就需要快速的数值计算库。在这项工作中,我们建议通过外部函数接口 (FFI) 调用高度优化的外部库(例如 LAPACK 或 BLAS)中的例程来加速低级计算。作为概念验证,我们基于 LAPACK 的 DGELSD 例程构建了线性回归的原型实现。使用三个不同大小的基准数据集,我们将我们的算法的执行时间与纯 Pharo 实现和 scikit-learn(一种流行的机器学习 Python 库)进行比较。我们表明 LAPACK&Pharo 比纯 Pharo 快 2103 倍。我们还表明,scikit-learn 比我们的原型快 8-5 倍,具体取决于数据的大小。最后,我们证明纯 Pharo 比纯 Python 中的等效实现快 15 倍。这些发现可以为未来为 Pharo 构建快速数值库并进一步在更高级的库(如 pharo-ai)中使用它们奠定基础。
*作者按字母顺序列出。SH感谢ERC合并器Grant 864863的资金,该资金支持他和LB的时间。我们感谢Nick Bloom,Germain Gauthier,Evan Munro,David Rossell和Leif Thorsrud以及Aarhus,Bocconi,Bocconi,Bse,Bates,Bates,Columbia,Columbia,Eth Zurich,Eth Zurich,Zurich,LSE,LSE,LSE,LSE,LSE,澳大利亚储备银行,UCSD,UCSD,USC,USC,Wardich,Wardich,Wardrich,3岁文本 - 达塔(Text-As-Data)讲习班,2024年BSE夏季学院,2024年Fineml会议(USI Lugano),2024年2024年经济学夏季大会的机器学习(UCHICAGO),2024 NASM(Vanderbilt)(Vanderbilt),Esif-aiml(Cornell)(Cornell)和Esam(Monash)(Monash)con-Intortial in Internations on International and Parrence in International and Parron和2024 2024年Econdat秋季会议。我们还要感谢Kirill Safonov的出色研究帮助。
as.matrix.confusionatatrix。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 avnnet。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5袋。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 bagearth。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 11 Bagfda。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 13个血脑箱。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8 bagearth。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11 Bagfda。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 13个血脑箱。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>11 Bagfda。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13个血脑箱。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>13个血脑箱。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15 BoxCoxtrans。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>15校准。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>17 CaretsBF。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>17 CaretsBF。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。20辆车。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 classdist。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22混乱matrix。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 ConfusionAtatrix.Train。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>27 COX2。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 29 CREATTATAPATTITION。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>27 COX2。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>29 CREATTATAPATTITION。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>30默认为Mommary。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>32个点图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>35 DFR。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>35 DFR。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36个差异。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 dotplot.diff.resplass。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40个下样本。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41个Dummyvars。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。41个Dummyvars。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>42 42提取物。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>46特征图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>48 FilterVarimp。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。49找到相关性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 findlinearcombos。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52格式。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 gafs.default。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 GAFSCONTROL。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 58 gafs_initial。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。54 GAFSCONTROL。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 gafs_initial。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 Germancredit。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。63 getSmplingInfo。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64 ggplot.rfe。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。64
当协变量p的尺寸可以达到样本量n的恒定分数时,我们考虑测试单个系数是否等于线性模型中的问题。在这个制度中,一个重要的主题是提出具有有限型构图的有效尺寸控制的测试,而无需噪声遵循强烈的分布假设。在本文中,我们提出了一种称为剩余置换测试(RPT)的新方法,该方法是通过将回归残差投射到原始设计矩阵和置换设计矩阵的柱子空间的空间正交中来构建的。rpt可以在固定设计下以可交换的噪声在固定设计下实现有限的人口尺寸有效性,每当P 此外,对于重型尾部噪声, rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。 我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。 数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。rpt均具有渐近强大的功能,该噪声(1 + t)的订单矩至少在t∈[0,1]中至少属于n -t/(1 + t)阶时。我们进一步证明了这种信号大小的要求在最小值意义上本质上是最佳的速率。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。数字研究结合了RPT在具有正常和重尾噪声分布的各种模拟设置中表现良好。
机器学习(ML)正在通过简化健康保险费的预测来重塑医疗保险,从而使保险公司可以为消费者提供更多个性化和高效的服务。本文介绍了一种基于回归的新型模型,旨在根据个人特征准确预测健康保险成本,从而弥合保险公司与保单持有人之间的差距。利用人工神经网络(ANN),该模型考虑了关键因素,包括年龄,性别,体重指数,受抚养人的数量,吸烟状况和地理位置,以更精确地预测高级成本。我们的方法证明了对传统方法的进步,在实验试验中实现了92.72%的预测准确性。这种高性能强调了该模型提供量身定制的高级估计的能力,从而通过提供公平和数据驱动的定价来提高客户满意度。这项研究进一步通过关键绩效指标来评估模型的功效,确认其稳健性和实用性适用于旨在采用ML进行个性化医疗保险的保险公司。拟议的模型有助于数字健康保险领域,为当今技术驱动的医疗保健景观中的保险公司和消费者提供了可扩展且数据丰富的方法。
