表观遗传年龄预测因子是Horvath的表观遗传钟1,这是一个统计预测模型,在353 CpG位点使用DNAM至1个预测年龄。2种训练表观遗传时钟的标准方法涉及几个关键步骤:(i)从具有不同背景的个体3个个体的生物样本中收集生物样本; (ii)提取DNA并进行DNA甲基化分析; (iii)进行数据预处理4个程序,例如缺少数据插补,离群值删除和数据归一化; (iv)采用特征筛选方法5来识别相关的CPG站点,这些位点可预测年龄或与衰老过程相关; (v)将高维6回归模型与弹性净罚款拟合; (vi)在独立的测试数据集上评估模型性能,以验证其7个准确性和鲁棒性。8尽管有完善的构造表观遗传时钟的管道,但其中大多数仅提供点平均预测1,2,5。9
我们提出了一种解决视频中2D人姿势估计的方法。视频中人类姿势估计的问题与估计静态图像中的人类姿势不同,因为视频包含大量相关信息。因此,我们投资了如何通过一系列视频框架来利用人体运动的信息来估算视频中的人类姿势。为此,我们引入了一种新型的热图回归方法,我们称之为运动吸引的热图恢复。我们的方法计算相邻帧的关节关键点中的运动向量。然后,我们签署了一种新的热图样式,我们称之为运动意识到的热图,以反映每个关节点的运动不确定性。与传统的热图不同,我们的运动吸引热图不仅考虑了当前的关节位置,而且还考虑了关节如何随时间移动。此外,我们引入了一个模拟且有效的框架,旨在将运动信息置于热图回归中。我们评估了在Posetrack(2018,21)和Sub-JHMDB数据集上的运动感知热图回归。我们的结果证明,拟议的运动吸引热图可显着提高视频中Human姿势估计的精度,尤其是在Challenging方案中,例如像体育游戏镜头一样具有实质性人类动作的视频。(代码和相关材料可在https://github.com/ songinpyo/mtpose中获得。)
在脑机接口 (BCI) 领域,选择高效且稳健的特征对于人工智能 (AI) 辅助临床诊断非常有吸引力。在本研究中,我们基于嵌入式特征选择模型,以逐层方式构建堆叠深度结构进行特征选择。其良好的性能由堆叠广义原理保证,即添加到原始特征中的随机投影可以帮助我们以堆叠方式连续打开原始特征空间中存在的流形结构。有了这样的好处,原始输入特征空间变得更加线性可分。我们使用波恩大学提供的癫痫脑电图数据来评估我们的模型。基于脑电图数据,我们构建了三个分类任务。在每个任务中,我们使用不同的特征选择模型来选择特征,然后使用两个分类器根据所选特征进行分类。我们的实验结果表明,我们的新结构选择的特征对分类器更有意义且更有帮助,因此比基准模型产生更好的性能。
1,2,教育科学和培训工程学多学科实验室(LMSEIF)。运动科学评估和体育锻炼教学。摩洛哥哈桑二世卡萨布兰卡大学的普通高中(ENS-C)。在线发布:2024年8月31日被接受出版:2024年8月15日doi:10.7752/jpes.2024.08214摘要:这项研究探讨了报道的数据和预测分析作为运动员培训计划的长期生成方法的使用。从607名高等教育学生那里收集的数据(平均年龄= 16.86; STD = 1.22),包括从物理测试和活动记录中进行的测量。数据集包含29个变量,这些变量是对培训程序的预测准确性的。我们利用Microsoft Azure机器学习来确定特征对结果的重要性,并利用Power BI可视化聚合特征对跑步距离的影响。初步发现表明,专注于训练工作的最佳年龄范围在16至17岁之间。该结果由Spearman相关系数为0.42支持,根据关键骨料特征规定了年龄组和预测的性能结果之间的中等正相关关系。特别是四个关键特征会显着影响性能,而其他变量的影响很小。该研究强调了这些总特征在预测训练成功方面的重要性。总而言之,该研究强调了强大的报告过程的重要性以及在制定培训计划中使用预测分析的重要性。它标识了四个关键特征,这些功能对实现的性能产生了重大影响。虽然这四个功能至关重要,但研究还承认,尽管有影响力较小,但其他变量仍然可能影响结果。这种全面的数据收集和分析方法为优化运动员培训计划提供了坚实的基础,以确保培训工作既有目标又有效。这些发现为旨在通过数据驱动的培训策略提高运动表现的教练和体育科学家提供了宝贵的见解。关键字:绩效优化,运动分析,数据驱动培训。简介
由欧盟资助的欧洲大学计划对于打造更加互联互通、竞争更加激烈的欧洲高等教育区至关重要。该计划旨在促进大学之间的深度跨国合作,使学生、教师和研究人员更容易在各国之间流动和合作。通过资助 EUonAIR 等联盟,欧盟旨在加强学术教育创新,促进包容性和负责任的教育实践,并为机构做好数字和技术进步的准备,包括人工智能整合。为该计划提供资金支持,欧盟可以促进教育包容性,满足快速变化的劳动力市场对技能的需求。它还有助于协调成员国的教育体系,支持欧洲建立更具数字化弹性、环境可持续性和社会包容性的社会的目标,如果没有大学间的合作,这一目标就不可能实现、不可行和可持续。
女性在绝经后患阿尔茨海默氏症和其他神经系统疾病的风险更高,但将女性大脑健康与性激素波动联系起来的研究却有限。我们希望通过开发工具来量化性激素波动过程中大脑的三维形状变化,以研究这种联系。三维离散曲面空间上的测地线回归提供了一种表征大脑形状演变的原则性方法。然而,就目前的形式而言,这种方法的计算成本太高,不便于实际使用。在本文中,我们提出了加速三维离散曲面形状空间上的测地线回归的近似方案。我们还提供了每种近似值可使用的经验法则。我们在合成数据上测试了我们的方法,以量化这些近似值的速度-准确度权衡,并表明从业者可以期待非常显着的速度提升,同时只牺牲很少的准确性。最后,我们将该方法应用于真实的大脑形状数据,并首次表征了女性海马体在月经周期中如何随着孕酮的变化而改变形状:我们的近似方案(实际上)使这一表征成为可能。我们的工作为生物医学和计算机视觉领域的全面、实用的形状分析铺平了道路。我们的实现在 GitHub 上公开可用。
摘要。连接分析是研究硬连线大脑结构以及与人类认知相关的灵活功能动力学的强大技术。最近的多模态连接研究面临着将功能和结构连接信息组合成一个集成网络的挑战。在本文中,我们提出了一个带有图约束弹性网络(Graph-Net)的单纯形回归模型,以低模型复杂度以生物学有意义的方式估计由结构连接丰富的功能网络。我们的模型使用稀疏单纯形回归框架构建功能网络,并基于 GraphNet 约束丰富结构连接信息。我们将我们的模型应用于真实的神经影像数据集,以展示其预测临床评分的能力。我们的结果表明,与使用单一模态相比,整合多模态特征可以检测到更敏感和更细微的大脑生物标志物。
𝐶= 𝑆 diag 𝑑 1 , 𝑑 1 , 𝑑 2 , 𝑑 2 , ⋯, 𝑑 𝑁 , 𝑑 𝑁 𝑆 𝑇 实对称 C 可以通过辛变换 S 转化为对角形式。高斯纯态有 𝑑 1 = 𝑑 2 = ⋯= 𝑑 𝑁 = 1 。
摘要:糖尿病疾病在全球范围很普遍,预测其进展至关重要。已经提出了几种模型来预测这种疾病。这些模型仅确定疾病标签,从而使发展疾病的可能性不清楚。提出一个预测疾病进展的模型至关重要。因此,本文提出了一个逻辑回归模型,以预测糖尿病综合征发病率的可能性。使用Sigmoid函数的模型利用逻辑回归的功能。使用PIMA印第安人糖尿病数据集评估了模型的性能,并表现出很高的精度,灵敏度和特异性。预测准确率为77.6%,灵敏度为72.4%,特异性为79.6%,I型误差为27.6%,II型误差为20.4%。此外,该模型表明了使用实验室测试的可行性,例如妊娠,葡萄糖,血压,BMI和糖尿病性重复功能,以预测疾病进展。提出的模型可以帮助患者和医生了解疾病的进展并及时进行干预措施